Aaron Teo ff27f80a74 ggml: initial IBM zDNN backend (#14975)
* ggml-zdnn: inital backend impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: temp change z17 to arch15

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: fix build bugs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: tensor->extra logging check

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: add layout name mapping, ztensor information

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: separate logging into its own line

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: add shape comparison

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: add ggml_tensor shape log

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

ggml-zdnn: fix incorrect shape logging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add output buffer check

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: run compute and store into tensor->extra

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add set_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add more loggers

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: update set_tensor logging to check only for matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: last working matmul version

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add comments to prevent accidentally deleting lines

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: support op out_prod

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: update op out_prod to use tensor->extra

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rewrite the backend implementation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: bugfix new impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix compiler warnings and bugfixes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: test ztensor finding in init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: implement at least 1 op to test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: assign tensor->extra to buffer

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add check for view tensors to prevent init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rework init_tensor to create new buffers

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: switch to std vector instead of array

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: switch buffers back and set to arbitrary number

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: impl init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: update supports_op matmul matrix

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix incorrect ztensor shape, reduce memory padding

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: code clean up

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: impl matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix compiler error missing type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix missing data transform call

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add bias init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: tighten memory usage, change string allocation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add bias ztensor and data free

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add bias data transform

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add more debug info for extra buffer transform

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add logger to check if mat mul ops go through set_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: activate bias transform in matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: move weights transform into mulmat

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add more safeguards in matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix sequencing of transforms

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: bugfix transform ztensor vs origtensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: figure out why sigtrap is happening

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix sigsegv

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: move everything back to local declaration

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: move bias data to local also

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: bring back working matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rewrite into mre

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix missing vector import

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix missing vector import in header

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt to fix sigsegv

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix missing load tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix invalid ztensor buffer release

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add logging to debug free buffer

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: remove free_buffer debug info

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add parmblkformat detections

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add nnpa installed detection

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add zdnn_init call for static libs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt at fixing invalid buffer

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: switch to using deque to fix pointer deref problem

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add weights logging to check

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt to use unique ptr

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add tensor to pre_tfm_desc logging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add inputs logging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: disable op_none initialisation for testing

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix missing return from init_tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: load ztensors in cgraph exec

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: work on moving output ztensor as well

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: disable logging and breakpoints for full test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt at manually changing the layout

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt at using default nwhc format instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: disable global load ztensor for now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix errorenous output load tensor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: add guards to prevent loading ztensor if transformed

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: bring load ztensor back to init routine

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: code clean up

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix ztensor deallocation abort

stabilise ggml <-> zdnn api

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: clean up matmul selection

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: clean up project structure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: update documentation, prepare for upstream

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* chore: add codeowners

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: disable batched matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt at fixing tensor views during matmul

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: deny all view tensors directly

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix pr comments

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update ops docs for zdnn

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: redo test-backend-ops for ops.md

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: fix typo in build-s390x.md

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* codeowners: remove taronaeo for now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "codeowners: remove taronaeo for now"

This reverts commit 411ea4ed78.

* ggml-zdnn: remove unused ggml_zdnn macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-15 21:11:22 +08:00
2025-08-14 14:59:27 +03:00
2025-08-14 17:16:03 +03:00

llama.cpp

llama

License: MIT Release Server

Manifesto / ggml / ops

LLM inference in C/C++

Recent API changes

Hot topics


Quick start

Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:

Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.

Example command:

# Use a local model file
llama-cli -m my_model.gguf

# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models

Typically finetunes of the base models below are supported as well.

Instructions for adding support for new models: HOWTO-add-model.md

Text-only

Multimodal

Bindings
UIs

(to have a project listed here, it should clearly state that it depends on llama.cpp)

Tools
  • akx/ggify download PyTorch models from HuggingFace Hub and convert them to GGML
  • akx/ollama-dl download models from the Ollama library to be used directly with llama.cpp
  • crashr/gppm launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
  • gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
  • Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure
  • Paddler - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
  • GPUStack - Manage GPU clusters for running LLMs
  • llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
  • llama-swap - transparent proxy that adds automatic model switching with llama-server
  • Kalavai - Crowdsource end to end LLM deployment at any scale
  • llmaz - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games
  • Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads GPU
CUDA Nvidia GPU
HIP AMD GPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU
WebGPU [In Progress] All
RPC All

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:

llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode

    Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding -cnv and specifying a suitable chat template with --chat-template NAME

    llama-cli -m model.gguf
    
    # > hi, who are you?
    # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
    #
    # > what is 1+1?
    # Easy peasy! The answer to 1+1 is... 2!
    
  • Run in conversation mode with custom chat template
    # use the "chatml" template (use -h to see the list of supported templates)
    llama-cli -m model.gguf -cnv --chat-template chatml
    
    # use a custom template
    llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
    
  • Run simple text completion

    To disable conversation mode explicitly, use -no-cnv

    llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
    
    # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga  it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
    
  • Constrain the output with a custom grammar
    llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
    
    # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
    

    The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

    For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080
    llama-server -m model.gguf --port 8080
    
    # Basic web UI can be accessed via browser: http://localhost:8080
    # Chat completion endpoint: http://localhost:8080/v1/chat/completions
    
  • Support multiple-users and parallel decoding
    # up to 4 concurrent requests, each with 4096 max context
    llama-server -m model.gguf -c 16384 -np 4
    
  • Enable speculative decoding
    # the draft.gguf model should be a small variant of the target model.gguf
    llama-server -m model.gguf -md draft.gguf
    
  • Serve an embedding model
    # use the /embedding endpoint
    llama-server -m model.gguf --embedding --pooling cls -ub 8192
    
  • Serve a reranking model
    # use the /reranking endpoint
    llama-server -m model.gguf --reranking
    
  • Constrain all outputs with a grammar
    # custom grammar
    llama-server -m model.gguf --grammar-file grammar.gbnf
    
    # JSON
    llama-server -m model.gguf --grammar-file grammars/json.gbnf
    

llama-perplexity

A tool for measuring the perplexity 1 (and other quality metrics) of a model over a given text.

  • Measure the perplexity over a text file
    llama-perplexity -m model.gguf -f file.txt
    
    # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
    # Final estimate: PPL = 5.4007 +/- 0.67339
    
  • Measure KL divergence
    # TODO
    

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark
    llama-bench -m model.gguf
    
    # Output:
    # | model               |       size |     params | backend    | threads |          test |                  t/s |
    # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         pp512 |      5765.41 ± 20.55 |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         tg128 |        197.71 ± 0.81 |
    #
    # build: 3e0ba0e60 (4229)
    

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama 2 .

  • Run a model with a specific prompt (by default it's pulled from Ollama registry)
    llama-run granite-code
    

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion
    llama-simple -m model.gguf
    
    # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
    

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

XCFramework

The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:

// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
    name: "MyLlamaPackage",
    targets: [
        .executableTarget(
            name: "MyLlamaPackage",
            dependencies: [
                "LlamaFramework"
            ]),
        .binaryTarget(
            name: "LlamaFramework",
            url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
            checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
        )
    ]
)

The above example is using an intermediate build b5046 of the library. This can be modified to use a different version by changing the URL and checksum.

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

Dependencies

  • yhirose/cpp-httplib - Single-header HTTP server, used by llama-server - MIT license
  • stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
  • nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
  • minja - Minimal Jinja parser in C++, used by various tools/examples - MIT License
  • linenoise.cpp - C++ library that provides readline-like line editing capabilities, used by llama-run - BSD 2-Clause License
  • curl - Client-side URL transfer library, used by various tools/examples - CURL License
  • miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain
Description
LLM inference in C/C++
Readme MIT 673 MiB
Languages
C++ 58.9%
C 13.2%
Python 9.1%
Cuda 6.9%
Objective-C 2.3%
Other 9.5%