262 Commits

Author SHA1 Message Date
Julien Denize
a3a7874272 convert : improve Mistral models integration (#14737)
* Improve Mistral models integration with llama.cpp

* Revert changes and fix gguf

* Revert change

* refactor convert_mistral_to_gguf.py in convert_hf_to_gguf.py

* Revert collateral

* Rename model name

* refactor

* revert

* remove duplicate

* Remove duplication code

* Fixes

* Fix flake issues

* Apply comments

* Apply comments

* Apply comments

* Fix remote

* add default chat template

* Revert

* nit
2025-08-11 10:07:49 +02:00
compilade
e54d41befc gguf-py : add Numpy MXFP4 de/quantization support (#15111)
* gguf-py : add MXFP4 de/quantization support

* ggml-quants : handle zero amax for MXFP4
2025-08-08 17:48:26 -04:00
RunningLeon
99acbc9921 llama : Support intern-s1 (#14875)
* support internvl

* support interns1

* resolve comments

* put interns1 in tensor mapping

* resolve comment

* move tokenizer changes to sub class
2025-08-07 18:20:40 +02:00
Georgi Gerganov
fd1234cb46 llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Sigbjørn Skjæret
e5bebe5251 gguf-py : add --chat-template-file to gguf_new_metadata (#15075) 2025-08-04 21:01:48 +02:00
Sam
ef0144c087 model: support GLM 4.5 family of models (#14939)
* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-08-04 20:29:25 +02:00
Gabriel Larson
83bc2f288c model : add text-only support for Kimi-VL (and find special tokens in text_config) (#15051)
* basic kimi-vl textmodel conversion

* check config["text_config"] for special tokens
2025-08-03 16:56:25 +02:00
Douglas Hanley
339bd0268c model : support Qwen3-Embedding (#15023) 2025-08-02 10:44:50 +02:00
stevenkuang
0f5ccd6fd1 model : add hunyuan dense (#14878)
* support hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan_moe to hunyuan_v1_moe

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix rope alpha assert and bos token

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* add blank line

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* Revert "update hunyuan_moe to hunyuan_v1_moe"

This reverts commit aa973ca219.

* use hunyuan_dense instead of hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan_moe chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* remove leftover code

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan dense chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan dense vocab and chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

---------

Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-08-01 15:31:12 +02:00
Csaba Kecskemeti
36e5fe7bcd MODEL_TENSOR.SSM_DT_NORM has defined twice (#14991)
* MODEL_TENSOR.SSM_DT_NORM has defined twice, and second overwritten the jamba model's layername

* correct order
2025-07-31 10:59:49 -04:00
Aman Gupta
8a4a856277 Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model

* Add README

* Fix README and convert_hf_to_gguf

* convert_hf_to_gguf.py: address review comments

* Make everything in a single example

* Remove model-specific sampling

* Remove unused argmax

* Remove braced initializers, improve README.md a bit

* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps

* Remove adding the mask token

* Move add_add_bos_token to set_vocab

* use add_bool in gguf_writer.py
2025-07-31 19:49:09 +08:00
Xuan-Son Nguyen
00fa15fedc mtmd : add support for Voxtral (#14862)
* mtmd : add support for Voxtral

* clean up

* fix python requirements

* add [BEGIN_AUDIO] token

* also support Devstral conversion

* add docs and tests

* fix regression for ultravox

* minor coding style improvement

* correct project activation fn

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-28 15:01:48 +02:00
Dongliang Wei
6c6e397aff model : add support for SmallThinker series (#14898)
* support smallthinker

* support 20b softmax, 4b no sliding window

* new build_moe_ffn_from_probs, and can run 4b

* fix 4b rope bug

* fix python type check

* remove is_moe judge

* remove set_dense_start_swa_pattern function and modify set_swa_pattern function

* trim trailing whitespace

* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* better whitespace

Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use GGML_ASSERT for expert count validation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Improve null pointer check for probs

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use template parameter for SWA attention logic

* better whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* move the creation of inp_out_ids before the layer loop

* remove redundant judge for probs

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-28 13:47:00 +02:00
Csaba Kecskemeti
acd6cb1c41 ggml : model card yaml tab->2xspace (#14819) 2025-07-22 19:29:43 +03:00
compilade
90083283ec imatrix : use GGUF to store importance matrices (#9400)
* imatrix : allow processing multiple chunks per batch

* perplexity : simplify filling the batch

* imatrix : fix segfault when using a single chunk per batch

* imatrix : use GGUF to store imatrix data

* imatrix : fix conversion problems

* imatrix : use FMA and sort tensor names

* py : add requirements for legacy imatrix convert script

* perplexity : revert changes

* py : include imatrix converter requirements in toplevel requirements

* imatrix : avoid using designated initializers in C++

* imatrix : remove unused n_entries

* imatrix : allow loading mis-ordered tensors

Sums and counts tensors no longer need to be consecutive.

* imatrix : more sanity checks when loading multiple imatrix files

* imatrix : use ggml_format_name instead of std::string concatenation

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* quantize : use unused imatrix chunk_size with LLAMA_TRACE

* common : use GGUF for imatrix output by default

* imatrix : two-way conversion between old format and GGUF

* convert : remove imatrix to gguf python script

* imatrix : use the function name in more error messages

* imatrix : don't use FMA explicitly

This should make comparisons between the formats easier
because this matches the behavior of the previous version.

* imatrix : avoid returning from void function save_imatrix

* imatrix : support 3d tensors with MUL_MAT

* quantize : fix dataset name loading from gguf imatrix

* common : move string_remove_suffix from quantize and imatrix

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* imatrix : add warning when legacy format is written

* imatrix : warn when writing partial data, to help guess dataset coverage

Also make the legacy format store partial data
by using neutral values for missing data.
This matches what is done at read-time for the new format,
and so should get the same quality in case the old format is still used.

* imatrix : avoid loading model to convert or combine imatrix

* imatrix : avoid using imatrix.dat in README

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-19 12:51:22 -04:00
lgai-exaone
e0cb5c5cb8 model : add EXAONE 4.0 support (#14630) 2025-07-18 10:45:49 +02:00
Piotr Wilkin (ilintar)
cb887f1bc1 model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-17 23:15:32 +02:00
Aman Gupta
ab14019821 Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B

* Move diffusion to examples

* Move stuff to examples. Add patch to not use kv-cache

* Address review comments

* Make sampling fast

* llama: remove diffusion functions

* Add basic timings + cleanup

* More cleanup

* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length

* fixup!

* Review: move everything to diffusion-cli for now
2025-07-16 20:03:51 +08:00
Ed Addario
c81f4192f9 gguf-py : dump bpw per layer and model in markdown mode (#14703) 2025-07-16 00:04:42 +02:00
Shunta Saito
68e37a61a7 model : add PLaMo-2 support (#14560)
* Add PLaMo-2 model using hybrid memory module

* Fix z shape

* Add cmath to include from llama-vocab.h

* Explicitly dequantize normalization weights before RoPE apply

* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing

* Use ATTN_K/Q_NORM for k,q weights to prevent quantization

* Remove SSM_BCDT that is not used from anywhere

* Do not duplicate embedding weights for output.weight

* Fix tokenizer encoding problem for multibyte strings

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up

* Remove unnecessary part for Grouped Query Attention

* Fix how to load special token id to gguf

* Remove unused tensor mapping

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix plamo2 tokenizer session to prevent multiple calls of build()

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-15 18:11:42 +02:00
Tarek Dakhran
f5e96b368f model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Gabe Goodhart
0aedae00e6 model : Granite Four (#13550)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* llama : use im2col and mul_mat to perform convolution for Mamba

This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* llama : rename llama_cache to llama_past

This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)

Still, I'm open to better suggestions.

* examples : replace llama_kv_cache_seq_* with llama_past_seq_*

* mamba : fix non-contiguous usage of ggml_silu

* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* feat: Add conversion for Bamba models

This is borrowed and adapted from the original implementation
https://github.com/ggml-org/llama.cpp/pull/10810

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add Granite 4 conversion

This is a manual copy from my draft branch
https://github.com/gabe-l-hart/llama.cpp/blob/GraniteFourDraft/convert_hf_to_gguf.py#L5076

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Plumb bamba through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add bamba to llama_arch_is_hybrid_recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add optional mamba ssm_in bias tensor

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add template specialization for get_arr to load a vector<uint32_t> for layer index arr in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Use an explicit bool to determine mamaba vs mamba2

This allows other architectures like bamba and granitemoehybrid to use
mamab2 without a growing architecture `if` statement inside the mamba
implementation.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Isolate mamba(2) and granite attention layer building in static methods

This will allow these layer-builder methods to be used from other build
structs without complex inheritance.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizes in granite build_attention_layer

Also no need to pass in kv cache since it's already in the inp_attn

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at end-to-end Bamba implementation

It generates (garbage) tokens! Still lots of debugging to do.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only do Granite multipliers if set

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Pull granite ffn portion into a static function and reuse in hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(py): Allow gguf duplicate keys if they match by value and type

This is helpful for hybrid models that want to do gguf param setting by
calling multiple parent classes without needing to make those parent
classes try/except on every attempt to set a gguf value.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor(py): Simplify granitemoehybrid conversion to use parents better

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add GRANITE_MOE_HYBRID through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support GRANITE_MOE_HYBRID in llama-model

This re-uses the Bamba code paths heavily and simply adds the missing parts
for loading MoE and the shared expert.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix flake8 errors

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix recurrent cache get after rebase

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix hybrid granite implementation for signature changes in build_mamba*_layer

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor relationship between non-hybrid classes and hybrid impl to use mixins

The challenge here is to give both the non-hybrid classes (llm_build_mamba
and llm_build_granite) AND the hybrid class (llm_build_hybrid_mamba) access
to the same intermediate "base class" functionality (build_mamba*_layer,
build_granite_attention_layer) without running into trouble with diamond
inheritance of llm_graph_context. Due to the non-trivial initialization
that happens in llm_graph_context, diamond inheritance results in multiple
initializations of the common base which cause problems around the unique
ptrs. I wanted to get away from `self->` everywhere, but this is still a
bit cleaner than making those methods static I think.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Implement the full copy-paste version to duplicate the layer builders

This follows the pattern where the type of input is pinned to the type of
memory and that is used to dispatch to the correct version of `build_rs` /
`build_attn`. There's a lot of code duplication that can hopefully be
pulled into common functions in the graph later.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llm_build_hybrid_mamba -> llm_build_granite_hybrid

I've got back-and-forth a lot about how/if to try to implement reuse of the
"child model" layer types for hybrid models. At the end of the day, I think
hybrid models are their own beast and even if their layers are inspired by
other models, they should maintain control of their own layer building (in
other words, the copy-paste method). Given that, the name should reflect
that this is not a generic hybrid model builder, but rather a granite-
specific hybrid model builder that can do MoE (granite 4) or dense (bamba).

As part if this, I also cleaned up dangling comments from previous attempts
at using static methods for reusability.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* memory : correctly handle failure in apply()

ggml-ci

* style: Remove TODO for adding first hybrid models to the switch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge in tensor_mapping.py w/ SSM_NORM

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge resolution with variable renames/moves in llm_build_mamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Fix comment about duplicate key check

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Conform to standard way of initializing inp_out_ids

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* convert : fix jamba conv1d shape squeezing

* fix: Fix input initialization in granite_hybrid after removal of hybrid inputs

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use llm_graph_context_mamba in llm_build_granite_hybrid

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor mamba2/granite/jamba/granite_hybrid relationships as mixins

The key is for the mixin classes (llm_graph_context_mamba,
llm_graph_context_granite) to use virtual inheritance from
llm_graph_context. This allows the common members to exist only once in the
class hierarchy. The downside is that llm_graph_context will be
re-initialized once for each parent (ie 2x for single mixin, 3x for two
mixins, etc...).

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* fix: Fix input setup after upstream merge

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Add support for dense FFN in GraniteMoeHybrid

This was already partially supported via reusing the granite ffn builder,
and there may be models that leverage this architecture going forward. The
naming is a bit odd, but in the transformers version, it reuses the same
model class and simply has zero regular experts and a single shared expert
(which is the same as a single dense FFN).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add support for dense FFN tensor names on c++ side

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use child inputs for Falcon H1 after merge resolution

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary prefix on tensor constants

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* fix: Revert order changes for Falcon H1 to stay consistent with upstream

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

* refactor: Collapse Bamba and GraniteMoeHybrid into GraniteHybrid

The only key difference is the use of rope which is now set via
rope_finetuned in the hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove use of diamond inheritance

Per PR discussion, it's simpler to keep this with basic inheritance and not
introduce the complexity of virtual inheritance and multiple inheritance

https://github.com/ggml-org/llama.cpp/pull/13550#issuecomment-3053787556

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Log mamba params for Granite Hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused ssm_in_b

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove ATTENTION_LAYER_INDICES hparam in favor of n_head_kv

This matches how recurrent vs attention heads are identified for Jamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused template expansion for get_arr

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Review cleanup in convert_hf_to_gguf

The gist is to be explicit about which base class is being used with the
multiple inheritance setup

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Undo hidden warnings about duplicate identical keys in add_key_value

After further discussion, this encourages sloppy overwriting in the model
converters

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: If not using ROPE, context is "infinite"

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* doc: Add a comment outlining expected duplicate key warnings

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary duplicate keys in converter

Co-authored-by: Francis Couture-Harpin <git@compilade.net>

(thanks for the sharp eyes and patience!)

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-11 02:20:13 +02:00
compilade
4a5686da22 llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* mamba : fix non-contiguous usage of ggml_silu

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* convert : fix jamba conv1d shape squeezing

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-09 14:59:57 -04:00
ibrahim khadraoui
04655063c4 model : add support for Falcon-H1 family (#14534)
* v1

* push more fixes

* another fix

* fix

* more fixes

* minor fix

* more cleaning on python code

* python fixes

* changed precision for multipliers float 32->64

* fixes

* another fix

* fix

* pre-norm -> norm

* fix

* Revert "fix"

This reverts commit 243e4d1a50.

* fix

* small fix ffn_norm

* try

* mix instead of max

* fix vocab size

* conflict solve

* fixed multipliers

* falcon-h1 specefic vocab resolved

* read arch from gguf.MODEL_ARCH

* mamba_d_ssm added to d_inner find_hparam

* remove unused functions from gguf_writer.py

* override modify_tensors instead of get_tensors

* fix conversion and d_inner

* added some cb functions for debugging puposes

* inp_out_ids moved outside of layers loop

* mup_vec create as float64

* fix rope_theta

* injected mup

* clean ups

* rm extra space

* rm unused MAMBA_CHUNK_SIZE

* rm unused key

* add bos False

* changed ROPE_TYPE

* cleaning debugging stuff

* cleaning debug quant

* fix comment

* some cleanups

* some cleanups

* Update src/llama-model-loader.cpp

* more cleanups

* moe cleanuips

* d_ssm -> d_inner;

* cleaning unused hparams

* cleanup

* more cleanups

* more cleanups on python conversion;

* minor cleanups

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* remove todo

* added falcon-h1

* tensor not required

* clean

* remove unneeded attributes

* more cleanups and fixed conversion

* remove final_norm

* flake8 fixes

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* flake8 fixes

* Update src/llama-hparams.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* added hashes

* Update src/llama-arch.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update the update file

* Revert "update the update file"

This reverts commit 082ab4ad2a.

* fix: address suggestions

* fix: update convert_hf_to_gguf.py

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model-loader.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* d_inner fixed

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* reshaping ssm_norm for 34B

* removing generate_mup

* remove duplicates metadata keys

* rm comment

* final comment

* fix unused args

* fix constants

* fix bad merge

* Update src/llama-model.cpp

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: remove unused ssm_in_b and bad merge

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* falcon-h1: fix last comment

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: revert add_add_bos(False)

* falcon-h1: fix tied weights

* falcon-h1: remove whitespace

* falcon-h1: fix wrong size param

* falcon-h1: fix whitespace issues

---------

Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-09 10:03:49 +02:00
Xuan-Son Nguyen
08382869a2 model : add SmolLM3 (#14581)
* Init - first pass.

* Model -> ModelBase.

* fix errors in conversion.

* Update the graph.

* up.

* up.

* wip

* cgraph ok

* rm redundant code

---------

Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
2025-07-08 18:07:01 +02:00
Xuan-Son Nguyen
8f22dc0a53 model : add hunyuan moe (#14425)
* model : add hunyuan moe

* tokenizer ok

* fix tensor name

* cgraph init

* chat template

* wip

* almost working

* skip embed, fix bos

* cleanup

* yarn scaling

* cleanup

* correct rope type

* failed token fix

* ntk alpha freq_base

* tokenization working

* cleanup and pr changes

* vocab_size sanity check

* ntk alpha generic

* Update convert_hf_to_gguf.py

* Apply suggestions from code review

* fix regression

* fix style

---------

Co-authored-by: kooshi <1934337+kooshi@users.noreply.github.com>
2025-07-08 11:24:06 +03:00
Xuan-Son Nguyen
0c2ee38ab7 convert : correct gemma 3n conversion (#14450)
* convert : correct gemma 3n conversion

* rm redundant code
2025-07-03 10:03:06 +02:00
Sigbjørn Skjæret
e75ba4c043 gguf-py : add support for chat template jinja files (#14508)
* add support for chat template jinja files

* remove gemma3n hack
2025-07-02 21:02:35 +02:00
compilade
5d46babdc2 llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Weizhao Ouyang
566c16fcce model : add support for ERNIE 4.5 0.3B model (#14408)
Add Day-0 support for Baidu ERNIE 4.5 0.3B model.

Signed-off-by: Weizhao Ouyang <weizhao.ouyang@arm.com>
2025-06-28 16:08:21 +02:00
Xuan-Son Nguyen
8846aace49 model : gemma3n text-only (#14400)
* gemma3n

* add llm_graph_input_one
2025-06-26 20:34:02 +03:00
Sigbjørn Skjæret
238005c2dc gguf-py : fix SpecialVocab parsing when post_processor is null (#14330) 2025-06-22 19:46:17 +02:00
Sigbjørn Skjæret
aa0ef5c578 gguf-py : fix Qwen3-Embedding eos token (#14314) 2025-06-21 18:12:05 +02:00
Sigbjørn Skjæret
58cba76a9a gguf-py : fix TemplateProcessing pair when bos/eos is missing (#14312) 2025-06-21 07:33:21 +02:00
Sigbjørn Skjæret
88fc854b4b llama : improve sep token handling (#14272) 2025-06-20 14:04:09 +02:00
Alex Trotta
381174bbda gguf-py : make sentencepiece optional (#14200)
* Make sentencepiece optional

* Bump to 0.18.0

* Bump patch instead of minor

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2025-06-19 15:56:12 +02:00
Đinh Trọng Huy
ad590be98c model : add NeoBERT (#14164)
* convert neobert model to gguf

* add inference graph

* fix flake8 lint

* followed reviewer suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* follow reviewers suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* override NeoBERT feed-forward length

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 14:53:41 +02:00
Đinh Trọng Huy
4ad243677b gguf-py : allow key override when adding value to GGUFWriter (#14194)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-16 09:20:59 +02:00
Bartowski
d7da8dc83a model : Add support for Arcee AI's upcoming AFM model (#14185)
* Add Arcee AFM support

* Add draft update code

* Fix linter and update URL, may still not be final

* Update src/llama-model.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Remote accidental blank line

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-06-16 01:04:06 +02:00
Mikko Juola
9ae4143bc6 model : add dots.llm1 architecture support (#14044) (#14118)
Adds:

* Dots1Model to convert_hf_to_gguf.py

* Computation graph code to llama-model.cpp

* Chat template to llama-chat.cpp to detect this model's template.

---

The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.

The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:

* https://huggingface.co/rednote-hilab/dots.llm1.inst

* https://huggingface.co/rednote-hilab/dots.llm1.base

The model architecture is a combination of Qwen and Deepseek parts, as
seen here:

ffe12627b4/src/transformers/models/dots1/modular_dots1.py
2025-06-15 09:52:06 +02:00
Sigbjørn Skjæret
3678b838bb llama : support GEGLU for jina-bert-v2 (#14090) 2025-06-10 18:02:08 +02:00
Sigbjørn Skjæret
1caae7fc6c gguf-py : add add_classifier_output_labels method to writer (#14031)
* add add_classifier_output_labels

* use add_classifier_output_labels
2025-06-05 17:42:31 +02:00
Đinh Trọng Huy
291f2b6913 llama : add support for DistilBert (#13907)
* add distilbert

* small fixes

* add note for LLM_ARCH_DISTIL_BERT

* Use MODEL_ARCH.BERT for DistilBert

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-30 11:56:02 +02:00
Sigbjørn Skjæret
e83ba3e460 llama : add support for jina-reranker-v2 (#13900) 2025-05-29 21:42:31 +02:00
Sigbjørn Skjæret
2b131621e6 gguf-py : add support for sub_type (in arrays) in GGUFWriter add_key_value method (#13561) 2025-05-29 15:36:05 +02:00
Sigbjørn Skjæret
6385b843a8 llama : add RobertaForSequenceClassification reranker support (#13875) 2025-05-29 08:15:01 +02:00
Beinsezii
53ae30640e gguf-py : fix SafetensorRemote return on undefined size (< 0) (#13841) 2025-05-28 23:50:20 +02:00
Xuan-Son Nguyen
26b79b6cb3 convert : fix tensor naming conflict for llama 4 vision (#13836)
* convert : fix tensor naming conflict for llama 4 vision

* add comment
2025-05-28 10:05:54 +02:00
Xuan-Son Nguyen
bc583e3c63 mtmd : support Qwen 2.5 Omni (input audio+vision, no audio output) (#13784)
* mtmd : allow multiple modalities at the same time

* refactor mtmd tokenizer

* fix compile

* ok, missing SinusoidsPositionEmbedding

* first working version

* fix style

* more strict validate of n_embd

* refactor if..else to switch

* fix regression

* add test for 3B

* update docs

* fix tokenizing with add_special

* add more tests

* fix test case "huge"

* rm redundant code

* set_position_mrope_1d rm n_tokens
2025-05-27 14:06:10 +02:00
Xuan-Son Nguyen
40aaa8a403 mtmd : add support for Qwen2-Audio and SeaLLM-Audio (#13760)
* mtmd : add Qwen2-Audio support

* small clean up

* update discussion link

* clarify mtmd_get_output_embd

* clarification in multimodal.md

* fix ultravox bug

* ggml_cont
2025-05-25 14:06:32 +02:00