mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-15 04:33:06 -04:00
gguf-py : add Numpy MXFP4 de/quantization support (#15111)
* gguf-py : add MXFP4 de/quantization support * ggml-quants : handle zero amax for MXFP4
This commit is contained in:
@@ -228,8 +228,7 @@ class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0):
|
||||
d = max / -8
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
# FIXME: Q4_0's reference rounding is cursed and depends on FMA
|
||||
qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
|
||||
qs = np.trunc((blocks * id) + np.float32(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
|
||||
|
||||
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
|
||||
@@ -300,8 +299,7 @@ class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0):
|
||||
d = max / -16
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
# FIXME: Q5_0's reference rounding is cursed and depends on FMA
|
||||
q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
|
||||
q = np.trunc((blocks * id) + np.float32(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
|
||||
|
||||
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
|
||||
@@ -655,6 +653,57 @@ class TQ2_0(__Quant, qtype=GGMLQuantizationType.TQ2_0):
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class MXFP4(__Quant, qtype=GGMLQuantizationType.MXFP4):
|
||||
# e2m1 values (doubled)
|
||||
# ref: https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
|
||||
kvalues = (0, 1, 2, 3, 4, 6, 8, 12, 0, -1, -2, -3, -4, -6, -8, -12)
|
||||
|
||||
@staticmethod
|
||||
# see ggml_e8m0_to_fp32_half in ggml-impl.h
|
||||
def e8m0_to_fp32_half(x: np.ndarray) -> np.ndarray:
|
||||
bits = np.where(x < 2, np.uint32(0x00200000) << np.uint32(x), np.uint32(x - 1) << np.uint32(23))
|
||||
return bits.view(np.float32)
|
||||
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d = abs(blocks).max(axis=-1, keepdims=True)
|
||||
|
||||
with np.errstate(divide="ignore"):
|
||||
e = np.where(d > 0, np.floor(np.log2(d)) - 2 + 127, 0).astype(np.uint8)
|
||||
|
||||
d = cls.e8m0_to_fp32_half(e)
|
||||
|
||||
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape((1, 1, 16))
|
||||
|
||||
errs = np.abs(d.reshape((n_blocks, 1, 1)) * kvalues.astype(np.float32) - blocks.reshape((n_blocks, cls.block_size, 1)))
|
||||
best = np.argmin(errs, axis=-1, keepdims=True)
|
||||
|
||||
qs = best.reshape(n_blocks, 2, cls.block_size // 2).astype(np.uint8)
|
||||
qs = qs[:, 0] | (qs[:, 1] << np.uint8(4))
|
||||
|
||||
qs = qs.reshape((n_blocks, cls.block_size // 2))
|
||||
|
||||
return np.concatenate([e, qs], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
e, qs = np.hsplit(blocks, [1])
|
||||
|
||||
d = cls.e8m0_to_fp32_half(e)
|
||||
|
||||
qs = qs.reshape((n_blocks, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
|
||||
qs = (qs & np.uint8(0x0F)).view(np.int8)
|
||||
|
||||
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
|
||||
qs = np.take_along_axis(kvalues, qs, axis=-1).reshape((n_blocks, cls.block_size))
|
||||
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS):
|
||||
ksigns: bytes = (
|
||||
b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f"
|
||||
|
@@ -67,6 +67,7 @@ class GGMLQuants:
|
||||
"q4_0", "q4_1", "q5_0", "q5_1", "q8_0",
|
||||
"q2_K", "q3_K", "q4_K", "q5_K", "q6_K",
|
||||
"tq1_0", "tq2_0",
|
||||
"mxfp4",
|
||||
"iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m",
|
||||
"iq4_nl", "iq4_xs",
|
||||
):
|
||||
@@ -140,14 +141,21 @@ def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType)
|
||||
return False
|
||||
|
||||
|
||||
def do_test(libggml_path: Path, quick: bool = False):
|
||||
def do_test(libggml_path: Path, quick: bool = False, user_type: GGMLQuantizationType | None = None):
|
||||
ggml_quants = GGMLQuants(libggml_path)
|
||||
|
||||
np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n})
|
||||
|
||||
r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False)
|
||||
# test zero blocks
|
||||
r[0, 0, :] = 0
|
||||
## Maybe test infinities? (can make NANs, not really useful in practice)
|
||||
# r[0, 1, 0] = np.inf
|
||||
# r[0, 2, 0] = -np.inf
|
||||
# r[0, 3, 0] = np.inf
|
||||
# r[0, 3, 1] = -np.inf
|
||||
|
||||
for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()):
|
||||
for qtype in ((GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()) if user_type is None else (user_type,)):
|
||||
has_dequantize = False
|
||||
has_quantize = False
|
||||
|
||||
@@ -228,11 +236,12 @@ def do_test(libggml_path: Path, quick: bool = False):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation")
|
||||
parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so")
|
||||
parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "bin" / "libggml.so", help="The path to libggml.so")
|
||||
parser.add_argument("--quick", action="store_true", help="Don't quantize with C when it's not strictly necessary")
|
||||
parser.add_argument("--type", type=str, help="The quant type to test (all by default)")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
do_test(args.libggml, args.quick)
|
||||
do_test(args.libggml, args.quick, GGMLQuantizationType[args.type.upper()] if args.type is not None else None)
|
||||
|
Reference in New Issue
Block a user