* Add PLaMo-2 model using hybrid memory module * Fix z shape * Add cmath to include from llama-vocab.h * Explicitly dequantize normalization weights before RoPE apply * Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing * Use ATTN_K/Q_NORM for k,q weights to prevent quantization * Remove SSM_BCDT that is not used from anywhere * Do not duplicate embedding weights for output.weight * Fix tokenizer encoding problem for multibyte strings * Apply suggestion from @CISC Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up * Remove unnecessary part for Grouped Query Attention * Fix how to load special token id to gguf * Remove unused tensor mapping * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations * Update src/llama-vocab.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Fix plamo2 tokenizer session to prevent multiple calls of build() --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
gguf
This is a Python package for writing binary files in the GGUF (GGML Universal File) format.
See convert_hf_to_gguf.py as an example for its usage.
Installation
pip install gguf
Optionally, you can install gguf with the extra 'gui' to enable the visual GGUF editor.
pip install gguf[gui]
API Examples/Simple Tools
examples/writer.py — Generates example.gguf
in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
examples/reader.py — Extracts and displays key-value pairs and tensor details from a GGUF file in a readable format.
gguf/scripts/gguf_dump.py — Dumps a GGUF file's metadata to the console.
gguf/scripts/gguf_set_metadata.py — Allows changing simple metadata values in a GGUF file by key.
gguf/scripts/gguf_convert_endian.py — Allows converting the endianness of GGUF files.
gguf/scripts/gguf_new_metadata.py — Copies a GGUF file with added/modified/removed metadata values.
gguf/scripts/gguf_editor_gui.py — Allows for viewing, editing, adding, or removing metadata values within a GGUF file as well as viewing its tensors with a Qt interface.
Development
Maintainers who participate in development of this package are advised to install it in editable mode:
cd /path/to/llama.cpp/gguf-py
pip install --editable .
Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py
.
In this case, upgrade Pip to the latest:
pip install --upgrade pip
Automatic publishing with CI
There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.
- Bump the version in
pyproject.toml
. - Create a tag named
gguf-vx.x.x
wherex.x.x
is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
- Push the tags.
git push origin --tags
Manual publishing
If you want to publish the package manually for any reason, you need to have twine
and build
installed:
pip install build twine
Then, follow these steps to release a new version:
- Bump the version in
pyproject.toml
. - Build the package:
python -m build
- Upload the generated distribution archives:
python -m twine upload dist/*
Run Unit Tests
From root of this repository you can run this command to run all the unit tests
python -m unittest discover ./gguf-py -v
TODO
- Include conversion scripts as command line entry points in this package.