mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-18 14:18:50 -04:00
ggml: initial IBM zDNN backend (#14975)
* ggml-zdnn: inital backend impl
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: temp change z17 to arch15
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: fix build bugs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: tensor->extra logging check
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: add layout name mapping, ztensor information
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: separate logging into its own line
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: add shape comparison
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: add ggml_tensor shape log
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
ggml-zdnn: fix incorrect shape logging
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add output buffer check
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: run compute and store into tensor->extra
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add set_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add more loggers
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: update set_tensor logging to check only for matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: last working matmul version
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add comments to prevent accidentally deleting lines
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: support op out_prod
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: update op out_prod to use tensor->extra
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: rewrite the backend implementation
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: bugfix new impl
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix compiler warnings and bugfixes
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: test ztensor finding in init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: implement at least 1 op to test
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: assign tensor->extra to buffer
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add check for view tensors to prevent init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: rework init_tensor to create new buffers
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: switch to std vector instead of array
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: switch buffers back and set to arbitrary number
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: impl init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: update supports_op matmul matrix
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix incorrect ztensor shape, reduce memory padding
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: code clean up
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: impl matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix compiler error missing type
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix missing data transform call
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add bias init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: tighten memory usage, change string allocation
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add bias ztensor and data free
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add bias data transform
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add more debug info for extra buffer transform
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add logger to check if mat mul ops go through set_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: activate bias transform in matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: move weights transform into mulmat
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add more safeguards in matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix sequencing of transforms
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: bugfix transform ztensor vs origtensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: figure out why sigtrap is happening
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix sigsegv
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: move everything back to local declaration
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: move bias data to local also
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: bring back working matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: rewrite into mre
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix missing vector import
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix missing vector import in header
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt to fix sigsegv
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix missing load tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix invalid ztensor buffer release
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add logging to debug free buffer
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: remove free_buffer debug info
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add parmblkformat detections
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add nnpa installed detection
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add zdnn_init call for static libs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt at fixing invalid buffer
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: switch to using deque to fix pointer deref problem
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add weights logging to check
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt to use unique ptr
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add tensor to pre_tfm_desc logging
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add inputs logging
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: disable op_none initialisation for testing
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix missing return from init_tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: load ztensors in cgraph exec
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: work on moving output ztensor as well
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: disable logging and breakpoints for full test
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt at manually changing the layout
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt at using default nwhc format instead
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: disable global load ztensor for now
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix errorenous output load tensor
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: add guards to prevent loading ztensor if transformed
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: code cleanup
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: bring load ztensor back to init routine
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: code clean up
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix ztensor deallocation abort
stabilise ggml <-> zdnn api
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: clean up matmul selection
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: clean up project structure
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: update documentation, prepare for upstream
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* chore: add codeowners
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: disable batched matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: attempt at fixing tensor views during matmul
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: deny all view tensors directly
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix pr comments
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* docs: update ops docs for zdnn
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: redo test-backend-ops for ops.md
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml-zdnn: fix typo in build-s390x.md
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* codeowners: remove taronaeo for now
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Revert "codeowners: remove taronaeo for now"
This reverts commit 411ea4ed78
.
* ggml-zdnn: remove unused ggml_zdnn macro
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
---------
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
This commit is contained in:
@@ -40,7 +40,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
@@ -42,7 +42,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
5
.github/labeler.yml
vendored
5
.github/labeler.yml
vendored
@@ -22,6 +22,11 @@ Vulkan:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/src/ggml-vulkan/**
|
||||
IBM zDNN:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-zdnn.h
|
||||
- ggml/src/ggml-zdnn/**
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
@@ -10,3 +10,4 @@
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/gguf.cpp @JohannesGaessler
|
||||
/ggml/src/ggml-vulkan/ @0cc4m
|
||||
/ggml/src/ggml-zdnn/ @taronaeo
|
||||
|
@@ -76,6 +76,23 @@ cmake --build build --config Release -j $(nproc)
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
## IBM zDNN Accelerator
|
||||
|
||||
This provides acceleration using the IBM zAIU co-processor located in the Telum I and Telum II processors. Make sure to have the [IBM zDNN library](https://github.com/IBM/zDNN) installed.
|
||||
|
||||
#### Compile from source from IBM
|
||||
|
||||
You may find the official build instructions here: [Building and Installing zDNN](https://github.com/IBM/zDNN?tab=readme-ov-file#building-and-installing-zdnn)
|
||||
|
||||
### Compilation
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_ZDNN=ON
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
```
|
||||
|
||||
## Getting GGUF Models
|
||||
|
||||
All models need to be converted to Big-Endian. You can achieve this in three cases:
|
||||
@@ -145,15 +162,15 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
|
||||
|
||||
### 1. SIMD Acceleration
|
||||
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. NNPA Vector Intrinsics Acceleration
|
||||
|
||||
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
Only available in IBM z16/LinuxONE 4 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 3. zDNN Accelerator
|
||||
### 3. zDNN Accelerator (WIP)
|
||||
|
||||
_Only available in IBM z16 / LinuxONE 4 or later system. No support currently available._
|
||||
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
|
||||
|
||||
### 4. Spyre Accelerator
|
||||
|
||||
@@ -229,11 +246,12 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
## Appendix A: Hardware Support Matrix
|
||||
|
||||
| | Support | Minimum Compiler Version |
|
||||
| ------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
| | Support | Minimum Compiler Version |
|
||||
| -------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
| IBM zDNN | ✅ | |
|
||||
|
||||
- ✅ - supported and verified to run as intended
|
||||
- 🚫 - unsupported, we are unlikely able to provide support
|
||||
@@ -242,7 +260,7 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
|
||||
| ---------- | ----------- | ---- | ---- | ----- |
|
||||
| FP32 | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP32 | ✅ | ✅ | ✅ | ❓ |
|
||||
| FP16 | ✅ | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
@@ -273,4 +291,4 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
- 🚫 - acceleration unavailable, will still run using scalar implementation
|
||||
- ❓ - acceleration unknown, please contribute if you can test it yourself
|
||||
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 25, 2025.
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 31, 2025.
|
||||
|
177
docs/ops.md
177
docs/ops.md
@@ -12,91 +12,92 @@ Legend:
|
||||
- 🟡 Partially supported by this backend
|
||||
- ❌ Not supported by this backend
|
||||
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|
||||
|-----------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|
||||
|-----------|------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SET | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
|
||||
|
8134
docs/ops/zDNN.csv
Normal file
8134
docs/ops/zDNN.csv
Normal file
File diff suppressed because it is too large
Load Diff
@@ -188,6 +188,7 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
|
||||
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
|
||||
option(GGML_ZDNN "ggml: use zDNN" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
|
16
ggml/include/ggml-zdnn.h
Normal file
16
ggml/include/ggml-zdnn.h
Normal file
@@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_zdnn_init(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@@ -382,6 +382,7 @@ ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(zDNN)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
|
@@ -49,6 +49,10 @@
|
||||
#include "ggml-webgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_ZDNN
|
||||
#include "ggml-zdnn.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
@@ -180,6 +184,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_ZDNN
|
||||
register_backend(ggml_backend_zdnn_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
|
@@ -460,7 +460,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=z17)
|
||||
list(APPEND ARCH_FLAGS -march=arch15)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
|
36
ggml/src/ggml-zdnn/CMakeLists.txt
Normal file
36
ggml/src/ggml-zdnn/CMakeLists.txt
Normal file
@@ -0,0 +1,36 @@
|
||||
if (DEFINED ZDNN_ROOT)
|
||||
message(STATUS "zdnn: using ZDNN_ROOT override: ${ZDNN_ROOT}")
|
||||
set(ZDNN_HINT "${ZDNN_ROOT}")
|
||||
else()
|
||||
set(ZDNN_HINT "")
|
||||
endif()
|
||||
|
||||
find_path(ZDNN_INCLUDE
|
||||
NAMES zdnn.h
|
||||
HINTS ${ZDNN_HINT} /usr /usr/local
|
||||
PATH_SUFFIXES include)
|
||||
if (ZDNN_INCLUDE)
|
||||
message(STATUS "zdnn: found include: ${ZDNN_INCLUDE}")
|
||||
else()
|
||||
message(FATAL_ERROR "zdnn: include directory not found, please set ZDNN_ROOT to the proper path if necessary")
|
||||
endif()
|
||||
|
||||
find_library(ZDNN_LIB
|
||||
NAMES zdnn
|
||||
HINTS ${ZDNN_HINT} /usr /usr/local
|
||||
PATH_SUFFIXES lib lib64)
|
||||
if (ZDNN_LIB)
|
||||
message(STATUS "zdnn: found library: ${ZDNN_LIB}")
|
||||
else()
|
||||
message(FATAL_ERROR "zdnn: library not found, please set ZDNN_ROOT to the proper path if necessary")
|
||||
endif()
|
||||
|
||||
file(GLOB GGML_SOURCES_ZDNN "*.c" "*.cpp")
|
||||
file(GLOB GGML_HEADERS_ZDNN "*.h" "*.hpp")
|
||||
|
||||
ggml_add_backend_library(ggml-zdnn ${GGML_HEADERS_ZDNN} ${GGML_SOURCES_ZDNN})
|
||||
target_link_libraries(ggml-zdnn PRIVATE ${ZDNN_LIB})
|
||||
target_include_directories(ggml-zdnn PRIVATE ${ZDNN_INCLUDE})
|
||||
target_link_directories(ggml-zdnn PRIVATE ${ZDNN_LIB})
|
||||
|
||||
target_compile_definitions(ggml-zdnn PRIVATE GGML_USE_ZDNN)
|
97
ggml/src/ggml-zdnn/ggml-zdnn-impl.h
Normal file
97
ggml/src/ggml-zdnn/ggml-zdnn-impl.h
Normal file
@@ -0,0 +1,97 @@
|
||||
#ifndef GGML_ZDNN_IMPL
|
||||
#define GGML_ZDNN_IMPL
|
||||
|
||||
#include "zdnn.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-zdnn.h"
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <vecintrin.h>
|
||||
|
||||
#define GGML_ZDNN_NAME "zDNN"
|
||||
#define GGML_ZDNN_VERSION ZDNN_VERNUM
|
||||
|
||||
#define vec_neg(a) (-(a)) // Vector Negate
|
||||
#define vec_add(a, b) ((a) + (b)) // Vector Add
|
||||
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
|
||||
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
|
||||
#define vec_div(a, b) ((a) / (b)) // Vector Divide
|
||||
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
|
||||
#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
|
||||
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
|
||||
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
|
||||
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet
|
||||
|
||||
#ifndef vec_and
|
||||
#define vec_and(a, b) ((a) & (b)) // Vector AND
|
||||
#endif
|
||||
|
||||
#ifndef vec_or
|
||||
#define vec_or(a, b) ((a) | (b)) // Vector OR
|
||||
#endif
|
||||
|
||||
#ifndef vec_xor
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
typedef int16_t int16x8_t __attribute__((vector_size(16)));
|
||||
typedef int32_t int32x4_t __attribute__((vector_size(16)));
|
||||
typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute__((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
#define ZDNN_CHECK(stmt) \
|
||||
do { \
|
||||
zdnn_status status = (stmt); \
|
||||
GGML_ASSERT(status == ZDNN_OK); \
|
||||
} while (0);
|
||||
|
||||
struct ggml_backend_zdnn_device_context {
|
||||
int zdnn_device;
|
||||
int zdnn_device_ref_count;
|
||||
|
||||
bool has_parmblkformat_0;
|
||||
bool has_parmblkformat_1;
|
||||
|
||||
size_t max_size;
|
||||
|
||||
char name[128];
|
||||
};
|
||||
|
||||
struct ggml_backend_zdnn_context {
|
||||
int device;
|
||||
ggml_cgraph * gf;
|
||||
};
|
||||
|
||||
struct ggml_backend_zdnn_buffer {
|
||||
void * data;
|
||||
size_t size;
|
||||
|
||||
zdnn_tensor_desc pre_tfm_desc;
|
||||
zdnn_tensor_desc tfm_desc;
|
||||
zdnn_ztensor ztensor;
|
||||
|
||||
char name[GGML_MAX_NAME];
|
||||
};
|
||||
|
||||
struct ggml_backend_zdnn_buffer_context {
|
||||
void * all_data;
|
||||
size_t all_size;
|
||||
bool owned;
|
||||
|
||||
int n_buffers;
|
||||
std::vector<std::unique_ptr<ggml_backend_zdnn_buffer>> buffers;
|
||||
};
|
||||
|
||||
#endif // GGML_ZDNN_IMPL
|
846
ggml/src/ggml-zdnn/ggml-zdnn.cpp
Normal file
846
ggml/src/ggml-zdnn/ggml-zdnn.cpp
Normal file
@@ -0,0 +1,846 @@
|
||||
#include "zdnn.h"
|
||||
#include "ggml-zdnn.h"
|
||||
#include "ggml-zdnn-impl.h"
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <csignal>
|
||||
#include <unistd.h>
|
||||
|
||||
inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return FP32;
|
||||
case GGML_TYPE_F16:
|
||||
return FP16;
|
||||
case GGML_TYPE_BF16:
|
||||
return BFLOAT;
|
||||
case GGML_TYPE_I8:
|
||||
return INT8;
|
||||
case GGML_TYPE_I32:
|
||||
return INT32;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return INT8;
|
||||
default:
|
||||
GGML_ABORT("%s: fatal: unable to determine zTensor data type",
|
||||
__func__);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc,
|
||||
zdnn_tensor_desc & tfm_desc,
|
||||
zdnn_ztensor & ztensor,
|
||||
const ggml_tensor * src,
|
||||
const int64_t * ne,
|
||||
const zdnn_data_layouts layout) {
|
||||
zdnn_init_pre_transformed_desc(
|
||||
layout,
|
||||
ggml_zdnn_type_mapping(src->type),
|
||||
&pre_tfm_desc,
|
||||
ne[3], ne[2], ne[1], ne[0]
|
||||
);
|
||||
|
||||
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
|
||||
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
|
||||
}
|
||||
|
||||
inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
|
||||
void * buffer) {
|
||||
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
|
||||
}
|
||||
|
||||
inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) {
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
zdnn_init_pre_transformed_desc(
|
||||
ZDNN_2D,
|
||||
ggml_zdnn_type_mapping(tensor->type),
|
||||
&buffer->pre_tfm_desc,
|
||||
tensor->ne[1], tensor->ne[0]
|
||||
);
|
||||
} break;
|
||||
|
||||
default:
|
||||
{
|
||||
// For 4D tensors, GGML uses NCHW layout. However, because zDNN
|
||||
// automatically transforms everything to NHWC, we will use it
|
||||
// directly to avoid the performance penalty changing the
|
||||
// layout and reshaping the tensor.
|
||||
zdnn_init_pre_transformed_desc(
|
||||
ZDNN_NHWC,
|
||||
ggml_zdnn_type_mapping(tensor->type),
|
||||
&buffer->pre_tfm_desc,
|
||||
tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
|
||||
);
|
||||
|
||||
// TODO: Consider adding a ggml check.
|
||||
// TODO: If tensor = 4D, use ZDNN_NCHW by default.
|
||||
// TODO: If tensor = 2D, use ZDNN_NHWC by default.
|
||||
} break;
|
||||
}
|
||||
|
||||
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
|
||||
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
|
||||
}
|
||||
|
||||
static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
const ggml_tensor * weights = src0;
|
||||
const ggml_tensor * inputs = src1;
|
||||
ggml_tensor * output = dst;
|
||||
|
||||
ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra;
|
||||
ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra;
|
||||
ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra;
|
||||
|
||||
zdnn_tensor_desc ptd_bias, td_bias;
|
||||
zdnn_ztensor zt_bias;
|
||||
|
||||
const int64_t weights_rows = ne01;
|
||||
const int64_t weights_cols = ne00;
|
||||
const int64_t inputs_rows = ne11;
|
||||
const int64_t inputs_cols = ne10;
|
||||
|
||||
assert(inputs_cols == weights_cols);
|
||||
|
||||
const int64_t output_rows = ne1;
|
||||
const int64_t output_cols = ne0;
|
||||
|
||||
const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
|
||||
ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D);
|
||||
|
||||
void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
|
||||
if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data);
|
||||
if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data);
|
||||
ggml_zdnn_load_tensor(zt_bias, bias_data);
|
||||
|
||||
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
|
||||
// __func__, weights_extra->name,
|
||||
// weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0],
|
||||
// weights_extra->pre_tfm_desc.dim1,
|
||||
// weights_extra->pre_tfm_desc.dim2,
|
||||
// weights_extra->pre_tfm_desc.dim3,
|
||||
// weights_extra->pre_tfm_desc.dim4);
|
||||
|
||||
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
|
||||
// __func__, inputs_extra->name,
|
||||
// inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0],
|
||||
// inputs_extra->pre_tfm_desc.dim1,
|
||||
// inputs_extra->pre_tfm_desc.dim2,
|
||||
// inputs_extra->pre_tfm_desc.dim3,
|
||||
// inputs_extra->pre_tfm_desc.dim4);
|
||||
|
||||
GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]");
|
||||
GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]");
|
||||
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]");
|
||||
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]");
|
||||
|
||||
ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias,
|
||||
false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
|
||||
// TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient.
|
||||
ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data));
|
||||
|
||||
ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias));
|
||||
free(bias_data);
|
||||
}
|
||||
|
||||
static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
bool use_mul_mat_vec =
|
||||
(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||||
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
|
||||
|
||||
bool use_mul_mat_vec_q =
|
||||
ggml_is_quantized(src0->type)
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
bool use_mul_mat_q =
|
||||
ggml_is_quantized(src0->type)
|
||||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
// debug helpers
|
||||
// GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec);
|
||||
// GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
|
||||
// GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q);
|
||||
// GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
|
||||
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
|
||||
// GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
|
||||
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
|
||||
// GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
||||
// GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
||||
|
||||
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
|
||||
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
|
||||
&& src1->ne[2] * src1->ne[3] > 1) {
|
||||
// general KQ + KQV multi-batch
|
||||
GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
|
||||
// ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
|
||||
} else if (use_mul_mat_vec) {
|
||||
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
|
||||
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
|
||||
} else if (use_mul_mat_vec_q) {
|
||||
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
|
||||
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
|
||||
} else if (use_mul_mat_q) {
|
||||
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
|
||||
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
|
||||
} else {
|
||||
// GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
|
||||
ggml_zdnn_mul_mat_op(ctx, src0, src1, dst);
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
|
||||
switch (dst->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
|
||||
break;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) {
|
||||
ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context;
|
||||
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context;
|
||||
|
||||
ctx->gf = gf;
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_empty(node)
|
||||
|| node->op == GGML_OP_NONE
|
||||
|| node->op == GGML_OP_RESHAPE
|
||||
|| node->op == GGML_OP_VIEW
|
||||
|| node->op == GGML_OP_PERMUTE
|
||||
|| node->op == GGML_OP_TRANSPOSE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
bool ok = ggml_zdnn_compute_forward(ctx, node);
|
||||
if (!ok) {
|
||||
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
|
||||
__func__, node->name, ggml_op_name(node->op));
|
||||
}
|
||||
|
||||
GGML_ASSERT(ok);
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
const ggml_tensor * src0 = op->src[0];
|
||||
const ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne0 = op->ne[0];
|
||||
const int64_t ne1 = op->ne[1];
|
||||
|
||||
const int64_t max_batch = ctx_dev->max_size;
|
||||
|
||||
return ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src0->view_src == nullptr && src1->view_src == nullptr &&
|
||||
src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch);
|
||||
} break;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//
|
||||
// globals
|
||||
//
|
||||
|
||||
// initialised in ggml_backend_zdnn_reg
|
||||
static ggml_backend_reg g_ggml_backend_zdnn_reg;
|
||||
static ggml_backend_device g_ggml_backend_zdnn_device;
|
||||
|
||||
static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = {
|
||||
/* .zdnn_device = */ 0,
|
||||
/* .zdnn_device_ref_count = */ 0,
|
||||
/* .has_parmblkformat_0 = */ false,
|
||||
/* .has_parmblkformat_1 = */ false,
|
||||
/* .max_size = */ 0,
|
||||
/* .name = */ "",
|
||||
};
|
||||
|
||||
static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) {
|
||||
assert(ctx != NULL);
|
||||
|
||||
if (ctx->zdnn_device == 0) {
|
||||
ctx->zdnn_device = 1;
|
||||
}
|
||||
|
||||
if (ctx->zdnn_device >= 1) {
|
||||
ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0);
|
||||
ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1);
|
||||
ctx->max_size = zdnn_get_nnpa_max_dim_idx_size();
|
||||
strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
|
||||
}
|
||||
|
||||
ctx->zdnn_device_ref_count++;
|
||||
return ctx->zdnn_device;
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) {
|
||||
assert(ctx != NULL);
|
||||
assert(ctx->zdnn_device_ref_count > 0);
|
||||
|
||||
ctx->zdnn_device_ref_count--;
|
||||
if (ctx->zdnn_device_ref_count == 0) {
|
||||
if (ctx->zdnn_device >= 0) {
|
||||
ctx->zdnn_device = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
|
||||
GGML_LOG_INFO("%s: allocating\n", __func__);
|
||||
GGML_LOG_INFO("%s: found 1 device\n", __func__);
|
||||
|
||||
#ifdef STATIC_LIB
|
||||
zdnn_init();
|
||||
#endif
|
||||
|
||||
ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context();
|
||||
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
|
||||
|
||||
int device = 1;
|
||||
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name);
|
||||
|
||||
ctx->device = device;
|
||||
GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name);
|
||||
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false");
|
||||
|
||||
ctx->gf = nullptr;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) {
|
||||
GGML_LOG_INFO("%s: deallocating\n", __func__);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
//
|
||||
// backend interface
|
||||
//
|
||||
|
||||
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
|
||||
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) {
|
||||
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor));
|
||||
}
|
||||
}
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
|
||||
return ctx->all_data;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
if (tensor->view_src != NULL) {
|
||||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
|
||||
|
||||
const int64_t tsize = ggml_nbytes(tensor);
|
||||
int buffer_idx = ctx->n_buffers;
|
||||
|
||||
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
|
||||
zdnn_buffer->data = tensor->data;
|
||||
zdnn_buffer->size = tsize;
|
||||
strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1);
|
||||
|
||||
ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor);
|
||||
tensor->extra = zdnn_buffer.get();
|
||||
|
||||
ctx->buffers.push_back(std::move(zdnn_buffer));
|
||||
ctx->n_buffers++;
|
||||
|
||||
// GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n",
|
||||
// __func__, tensor->name, buffer_idx, tsize);
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
|
||||
|
||||
memset(ctx->all_data, value, ctx->all_size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
|
||||
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ NULL,
|
||||
/* .clear = */ ggml_backend_zdnn_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
//
|
||||
// default buffer type
|
||||
//
|
||||
|
||||
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_ZDNN_NAME;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
|
||||
|
||||
const size_t size_page = sysconf(_SC_PAGESIZE);
|
||||
|
||||
size_t size_aligned = size;
|
||||
if ((size_aligned % size_page) != 0) {
|
||||
size_aligned += size_page - (size_aligned % size_page);
|
||||
}
|
||||
|
||||
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context;
|
||||
|
||||
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
|
||||
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
|
||||
|
||||
ctx->all_data = ggml_aligned_malloc(size_aligned);
|
||||
ctx->all_size = size_aligned;
|
||||
ctx->owned = true;
|
||||
ctx->n_buffers = 1;
|
||||
|
||||
if (ctx->all_data != NULL) {
|
||||
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
|
||||
zdnn_buffer->data = ctx->all_data;
|
||||
zdnn_buffer->size = size_aligned;
|
||||
ctx->buffers.push_back(std::move(zdnn_buffer));
|
||||
}
|
||||
|
||||
if (size_aligned > 0 && (ctx->all_data == NULL)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n",
|
||||
__func__, size_aligned / 1024.0 / 1024.0);
|
||||
delete ctx;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 256;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_backend_zdnn_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_type_zdnn;
|
||||
}
|
||||
|
||||
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_ZDNN_NAME "_Mapped";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_backend_zdnn_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_from_ptr_type_zdnn;
|
||||
}
|
||||
|
||||
//
|
||||
// backend
|
||||
//
|
||||
|
||||
static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
|
||||
return GGML_ZDNN_NAME;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
|
||||
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
|
||||
|
||||
ggml_zdnn_free(ctx);
|
||||
free(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
return ggml_zdnn_graph_compute(backend, cgraph);
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_zdnn_i = {
|
||||
/* .get_name = */ ggml_backend_zdnn_name,
|
||||
/* .free = */ ggml_backend_zdnn_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_zdnn_guid(void) {
|
||||
static const char * guid_str = "IBM-ZDNN-ACCELER";
|
||||
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
|
||||
}
|
||||
|
||||
// TODO: remove in the future
|
||||
ggml_backend_t ggml_backend_zdnn_init(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
|
||||
|
||||
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
|
||||
if (ctx == NULL) {
|
||||
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend));
|
||||
*backend = (ggml_backend) {
|
||||
/* .guid = */ ggml_backend_zdnn_guid(),
|
||||
/* .iface = */ ggml_backend_zdnn_i,
|
||||
/* .device = */ dev,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
|
||||
return backend != NULL &&
|
||||
ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
//
|
||||
// backend device
|
||||
//
|
||||
|
||||
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
|
||||
return GGML_ZDNN_NAME;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
|
||||
return "IBM Z Neural Network Processing Assist (NNPA)";
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_zdnn_device_get_name(dev);
|
||||
props->description = ggml_backend_zdnn_device_get_description(dev);
|
||||
props->type = ggml_backend_zdnn_device_get_type(dev);
|
||||
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = (ggml_backend_dev_caps) {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
|
||||
if (ctx == NULL) {
|
||||
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend));
|
||||
*backend = (ggml_backend) {
|
||||
/* .guid = */ ggml_backend_zdnn_guid(),
|
||||
/* .iface = */ ggml_backend_zdnn_i,
|
||||
/* .device = */ dev,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return backend;
|
||||
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_zdnn_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
|
||||
|
||||
ctx->all_data = ptr;
|
||||
ctx->all_size = size;
|
||||
ctx->owned = false;
|
||||
ctx->n_buffers = 0;
|
||||
|
||||
const size_t size_page = sysconf(_SC_PAGESIZE);
|
||||
|
||||
// page-align the data ptr
|
||||
{
|
||||
const uintptr_t offs = (uintptr_t) ptr % size_page;
|
||||
ptr = (void *)((char *)ptr - offs);
|
||||
size += offs;
|
||||
}
|
||||
|
||||
size_t size_aligned = size;
|
||||
if ((size_aligned % size_page) != 0) {
|
||||
size_aligned += size_page - (size_aligned % size_page);
|
||||
}
|
||||
|
||||
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
|
||||
|
||||
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
|
||||
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
|
||||
|
||||
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
|
||||
zdnn_buffer->data = ptr;
|
||||
zdnn_buffer->size = size;
|
||||
ctx->buffers.push_back(std::move(zdnn_buffer));
|
||||
|
||||
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
|
||||
__func__, size_aligned / 1024.0 / 1024.0);
|
||||
|
||||
++ctx->n_buffers;
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context;
|
||||
|
||||
return ggml_zdnn_supports_op(ctx_dev, op);
|
||||
}
|
||||
|
||||
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return
|
||||
buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
|
||||
buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_device_i ggml_backend_zdnn_device_i = {
|
||||
/* .get_name = */ ggml_backend_zdnn_device_get_name,
|
||||
/* .get_description = */ ggml_backend_zdnn_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_zdnn_device_get_type,
|
||||
/* .get_props = */ ggml_backend_zdnn_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_zdnn_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
|
||||
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
//
|
||||
// backend registry
|
||||
//
|
||||
|
||||
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return GGML_ZDNN_NAME;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
|
||||
if (!zdnn_is_nnpa_installed()) {
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
return &g_ggml_backend_zdnn_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static ggml_backend_feature g_ggml_backend_zdnn_features[] = {
|
||||
{ "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" },
|
||||
{ "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" },
|
||||
{ "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" },
|
||||
{ NULL, NULL },
|
||||
};
|
||||
|
||||
static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
|
||||
return g_ggml_backend_zdnn_features;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (strcmp(name, "ggml_backend_get_features") == 0) {
|
||||
return (void *) ggml_backend_zdnn_get_features;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
|
||||
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
|
||||
/* .get_device = */ ggml_backend_zdnn_reg_device_get,
|
||||
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
|
||||
};
|
||||
|
||||
static void ggml_zdnn_cleanup(void) {
|
||||
ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
|
||||
}
|
||||
|
||||
// TODO: make thread-safe
|
||||
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
|
||||
ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
|
||||
|
||||
// register cleanup callback
|
||||
atexit(ggml_zdnn_cleanup);
|
||||
|
||||
{
|
||||
g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
|
||||
/* .api_version = */ GGML_ZDNN_VERSION,
|
||||
/* .iface = */ ggml_backend_zdnn_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
g_ggml_backend_zdnn_device = (ggml_backend_device) {
|
||||
/* .iface = */ ggml_backend_zdnn_device_i,
|
||||
/* .reg = */ &g_ggml_backend_zdnn_reg,
|
||||
/* .context = */ &g_ggml_ctx_dev_main,
|
||||
};
|
||||
|
||||
return &g_ggml_backend_zdnn_reg;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)
|
Reference in New Issue
Block a user