mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-13 22:39:06 +00:00
kv-cache : remove llama_kv_cache_i
This commit is contained in:
@ -2533,7 +2533,7 @@ void llama_context_kv_self::kv_self_update() {
|
||||
|
||||
auto * gf = graph_init();
|
||||
|
||||
kv_self.build_shift(ctx_compute.get(), gf, this);
|
||||
build_kv_self_shift(ctx_compute.get(), gf);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
|
||||
@ -2559,7 +2559,7 @@ void llama_context_kv_self::kv_self_update() {
|
||||
|
||||
auto * gf = graph_init();
|
||||
|
||||
kv_self.build_defrag(ctx_compute.get(), gf, max_nodes(), !cparams.flash_attn);
|
||||
build_kv_self_defrag(ctx_compute.get(), gf);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
|
||||
@ -2817,6 +2817,309 @@ ggml_tensor * llama_context_kv_self::build_attn_soft_max(
|
||||
return ggml_soft_max_ext(ctx0, kq, inp_KQ_mask_cnv, kq_scale, hparams.f_max_alibi_bias);
|
||||
}
|
||||
|
||||
void llama_context_kv_self::build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & n_layer = hparams.n_layer;
|
||||
|
||||
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
||||
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
||||
|
||||
//GGML_ASSERT(kv_self.size == n_ctx);
|
||||
|
||||
ggml_tensor * inp_k_shift = build_inp_k_shift(ctx0);
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
|
||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
n_embd_head_k, n_head_kv, kv_self.size,
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
0);
|
||||
|
||||
ggml_tensor * cur = build_rope_shift(ctx0, k, inp_k_shift, rope_factors, kv_self.k_l[il]->buffer);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_context_kv_self::build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
const uint32_t n_kv = kv_self.cell_max();
|
||||
const uint32_t n_used = kv_self.used;
|
||||
|
||||
assert(n_used <= n_kv);
|
||||
|
||||
//const int64_t t_start = ggml_time_us();
|
||||
|
||||
// number of cells moved
|
||||
uint32_t n_moves = 0;
|
||||
|
||||
// each move requires 6*n_layer tensors (see build_kv_self_defrag)
|
||||
// - source view, destination view, copy operation
|
||||
// - x2 for keys and values
|
||||
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
||||
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||||
const uint32_t max_moves = (max_nodes() - 2*n_layer)/(6*n_layer);
|
||||
|
||||
// determine which KV cells to move where
|
||||
//
|
||||
// cell i moves to ids[i]
|
||||
//
|
||||
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
||||
//
|
||||
std::vector<uint32_t> ids(n_kv, n_kv);
|
||||
|
||||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||||
const auto & cell0 = kv_self.cells[i0];
|
||||
|
||||
if (!cell0.is_empty()) {
|
||||
ids[i0] = i0;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// found a hole - fill it with data from the end of the cache
|
||||
|
||||
uint32_t nh = 1;
|
||||
|
||||
// determine the size of the hole
|
||||
while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
|
||||
nh++;
|
||||
}
|
||||
|
||||
uint32_t nf = 0;
|
||||
uint32_t is = n_kv - 1;
|
||||
|
||||
// starting from the end, find nh non-empty cells
|
||||
for (; is > i0; --is) {
|
||||
const auto & cell1 = kv_self.cells[is];
|
||||
|
||||
if (cell1.is_empty() || ids[is] != n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// non-empty cell which is not yet moved
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// this can only happen if `n_used` is not accurate, which would be a bug
|
||||
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
|
||||
|
||||
nf = 0;
|
||||
|
||||
uint32_t i1 = is;
|
||||
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
// should we stop searching for the next move?
|
||||
bool stop = false;
|
||||
|
||||
// go back and move the nf cells to the hole
|
||||
for (; i1 < n_kv; ++i1) {
|
||||
auto & cell1 = kv_self.cells[i1];
|
||||
|
||||
if (cell1.is_empty() || ids[i1] != n_kv) {
|
||||
if (n_moves == max_moves) {
|
||||
stop = true;
|
||||
break;
|
||||
}
|
||||
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// this cell goes to (i0 + nf)
|
||||
ids[i1] = i0 + nf;
|
||||
|
||||
// move the cell meta data
|
||||
kv_self.cells[i0 + nf] = cell1;
|
||||
|
||||
// clear the old cell and move the head there
|
||||
cell1 = llama_kv_cell();
|
||||
kv_self.head = n_used;
|
||||
|
||||
if (!cont) {
|
||||
n_moves++;
|
||||
cont = true;
|
||||
}
|
||||
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (stop || n_moves == max_moves) {
|
||||
break;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
||||
|
||||
i0 += nh - 1;
|
||||
}
|
||||
|
||||
if (n_moves == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
||||
|
||||
//LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
||||
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
// TODO: optimizations are possible:
|
||||
// - multiple threads
|
||||
// - avoid copying to the host memory when already there
|
||||
//
|
||||
// likely not worth the effort, as we have ggml_graph based defrag
|
||||
//
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
const uint32_t kv_size = size;
|
||||
|
||||
std::vector<uint8_t> buf_k;
|
||||
std::vector<uint8_t> buf_v;
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
||||
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
||||
|
||||
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
||||
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
||||
|
||||
buf_k.resize(k_size);
|
||||
buf_v.resize(v_size);
|
||||
|
||||
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
|
||||
// batch move [i, i+nm) to [id, id+nm)
|
||||
// note: cells can move only to a lower index
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
// move keys
|
||||
{
|
||||
const int64_t os = i*k_size_row;
|
||||
const int64_t od = id*k_size_row;
|
||||
|
||||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
||||
}
|
||||
|
||||
// move values (note: they are transposed)
|
||||
{
|
||||
const int64_t os = i;
|
||||
const int64_t od = id;
|
||||
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
||||
}
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == ids.size()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) { // NOLINT
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
|
||||
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
|
||||
|
||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
|
||||
if (cparams.flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
|
||||
} else {
|
||||
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
|
||||
ggml_row_size(kv_self.v_l[il]->type, i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
|
||||
ggml_row_size(kv_self.v_l[il]->type, id));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
#endif
|
||||
}
|
||||
|
||||
ggml_tensor * llama_context_kv_self::build_inp_embd_enc(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
|
@ -378,7 +378,7 @@ public:
|
||||
|
||||
virtual void build_attn_kv_store(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
int32_t n_tokens,
|
||||
@ -387,7 +387,7 @@ public:
|
||||
|
||||
virtual ggml_tensor * build_attn_qkv(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur,
|
||||
@ -401,6 +401,15 @@ public:
|
||||
ggml_tensor * kq,
|
||||
float kq_scale) override;
|
||||
|
||||
virtual void build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) override;
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
virtual void build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) override;
|
||||
|
||||
// === encoder-decoder ===
|
||||
|
||||
// whether we are computing encoder output or decoder output
|
||||
@ -443,7 +452,7 @@ public:
|
||||
|
||||
virtual ggml_tensor * build_copy_mask_state(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * s,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
@ -454,7 +463,7 @@ public:
|
||||
|
||||
virtual ggml_tensor * build_mamba_layer(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
@ -464,7 +473,7 @@ public:
|
||||
|
||||
virtual ggml_tensor * build_rwkv_token_shift_load(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
@ -480,7 +489,7 @@ public:
|
||||
|
||||
virtual ggml_tensor * build_rwkv6_time_mix(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * x_prev,
|
||||
ggml_tensor * state_copy,
|
||||
|
@ -113,6 +113,15 @@ public:
|
||||
ggml_tensor * kq,
|
||||
float kq_scale) = 0;
|
||||
|
||||
virtual void build_kv_self_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) = 0;
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
virtual void build_kv_self_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_k_shift(
|
||||
ggml_context * ctx0) = 0;
|
||||
|
||||
@ -182,18 +191,3 @@ public:
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
};
|
||||
|
||||
class llama_graph_kv_cache_i {
|
||||
public:
|
||||
virtual void build_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
llama_graph_i * lgf) = 0;
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
virtual void build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
int32_t max_nodes,
|
||||
bool v_trans) = 0;
|
||||
};
|
||||
|
@ -699,308 +699,6 @@ size_t llama_kv_cache::size_v_bytes() const {
|
||||
return size_v_bytes;
|
||||
}
|
||||
|
||||
void llama_kv_cache::build_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
llama_graph_i * lgf) {
|
||||
const auto & n_layer = hparams.n_layer;
|
||||
|
||||
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
||||
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
||||
|
||||
//GGML_ASSERT(kv_self.size == n_ctx);
|
||||
|
||||
ggml_tensor * inp_k_shift = lgf->build_inp_k_shift(ctx0);
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
|
||||
struct ggml_tensor * rope_factors = lgf->build_rope_factors(il);
|
||||
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx0, k_l[il],
|
||||
n_embd_head_k, n_head_kv, size,
|
||||
ggml_row_size(k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
||||
0);
|
||||
|
||||
ggml_tensor * cur = lgf->build_rope_shift(ctx0, k, inp_k_shift, rope_factors, k_l[il]->buffer);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache::build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
int32_t max_nodes,
|
||||
bool v_trans) {
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
const uint32_t n_kv = cell_max();
|
||||
const uint32_t n_used = used;
|
||||
|
||||
assert(n_used <= n_kv);
|
||||
|
||||
//const int64_t t_start = ggml_time_us();
|
||||
|
||||
// number of cells moved
|
||||
uint32_t n_moves = 0;
|
||||
|
||||
// each move requires 6*n_layer tensors (see build_kv_self_defrag)
|
||||
// - source view, destination view, copy operation
|
||||
// - x2 for keys and values
|
||||
//const uint32_t max_moves = max_nodes/(6*n_layer);
|
||||
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||||
const uint32_t max_moves = (max_nodes - 2*n_layer)/(6*n_layer);
|
||||
|
||||
// determine which KV cells to move where
|
||||
//
|
||||
// cell i moves to ids[i]
|
||||
//
|
||||
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
||||
//
|
||||
std::vector<uint32_t> ids(n_kv, n_kv);
|
||||
|
||||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||||
const auto & cell0 = cells[i0];
|
||||
|
||||
if (!cell0.is_empty()) {
|
||||
ids[i0] = i0;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// found a hole - fill it with data from the end of the cache
|
||||
|
||||
uint32_t nh = 1;
|
||||
|
||||
// determine the size of the hole
|
||||
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
|
||||
nh++;
|
||||
}
|
||||
|
||||
uint32_t nf = 0;
|
||||
uint32_t is = n_kv - 1;
|
||||
|
||||
// starting from the end, find nh non-empty cells
|
||||
for (; is > i0; --is) {
|
||||
const auto & cell1 = cells[is];
|
||||
|
||||
if (cell1.is_empty() || ids[is] != n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// non-empty cell which is not yet moved
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// this can only happen if `n_used` is not accurate, which would be a bug
|
||||
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
|
||||
|
||||
nf = 0;
|
||||
|
||||
uint32_t i1 = is;
|
||||
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
// should we stop searching for the next move?
|
||||
bool stop = false;
|
||||
|
||||
// go back and move the nf cells to the hole
|
||||
for (; i1 < n_kv; ++i1) {
|
||||
auto & cell1 = cells[i1];
|
||||
|
||||
if (cell1.is_empty() || ids[i1] != n_kv) {
|
||||
if (n_moves == max_moves) {
|
||||
stop = true;
|
||||
break;
|
||||
}
|
||||
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// this cell goes to (i0 + nf)
|
||||
ids[i1] = i0 + nf;
|
||||
|
||||
// move the cell meta data
|
||||
cells[i0 + nf] = cell1;
|
||||
|
||||
// clear the old cell and move the head there
|
||||
cell1 = llama_kv_cell();
|
||||
head = n_used;
|
||||
|
||||
if (!cont) {
|
||||
n_moves++;
|
||||
cont = true;
|
||||
}
|
||||
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (stop || n_moves == max_moves) {
|
||||
break;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
||||
|
||||
i0 += nh - 1;
|
||||
}
|
||||
|
||||
if (n_moves == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
||||
|
||||
//LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
||||
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
// TODO: optimizations are possible:
|
||||
// - multiple threads
|
||||
// - avoid copying to the host memory when already there
|
||||
//
|
||||
// likely not worth the effort, as we have ggml_graph based defrag
|
||||
//
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
const uint32_t kv_size = size;
|
||||
|
||||
std::vector<uint8_t> buf_k;
|
||||
std::vector<uint8_t> buf_v;
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
||||
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
||||
|
||||
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
||||
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
||||
|
||||
buf_k.resize(k_size);
|
||||
buf_v.resize(v_size);
|
||||
|
||||
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
|
||||
// batch move [i, i+nm) to [id, id+nm)
|
||||
// note: cells can move only to a lower index
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
// move keys
|
||||
{
|
||||
const int64_t os = i*k_size_row;
|
||||
const int64_t od = id*k_size_row;
|
||||
|
||||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
||||
}
|
||||
|
||||
// move values (note: they are transposed)
|
||||
{
|
||||
const int64_t os = i;
|
||||
const int64_t od = id;
|
||||
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
||||
}
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == ids.size()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
|
||||
ggml_tensor * view_k_src = ggml_view_2d(ctx0, k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa*i));
|
||||
|
||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, k_l[il],
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa*id));
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
|
||||
if (!v_trans) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx0, v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa*i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, v_l[il],
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa*id));
|
||||
} else {
|
||||
view_v_src = ggml_view_2d(ctx0, v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(v_l[il]->type, size),
|
||||
ggml_row_size(v_l[il]->type, i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx0, v_l[il],
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(v_l[il]->type, size),
|
||||
ggml_row_size(v_l[il]->type, id));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
#endif
|
||||
}
|
||||
|
||||
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
||||
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
||||
uint32_t cell_count = 0;
|
||||
|
@ -49,7 +49,7 @@ struct llama_kv_cache_slot_info {
|
||||
// TODO: pimpl
|
||||
// TODO: add notion of max sequences
|
||||
// TODO: add llama_hparams &
|
||||
struct llama_kv_cache : public llama_graph_kv_cache_i {
|
||||
struct llama_kv_cache {
|
||||
llama_kv_cache(const llama_hparams & hparams);
|
||||
virtual ~llama_kv_cache() = default;
|
||||
|
||||
@ -97,19 +97,6 @@ struct llama_kv_cache : public llama_graph_kv_cache_i {
|
||||
size_t size_k_bytes() const;
|
||||
size_t size_v_bytes() const;
|
||||
|
||||
// graph build API
|
||||
|
||||
virtual void build_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
llama_graph_i * lgf) override;
|
||||
|
||||
virtual void build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * gf,
|
||||
int32_t max_nodes,
|
||||
bool v_trans) override;
|
||||
|
||||
// state save/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
|
||||
|
Reference in New Issue
Block a user