mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-14 14:53:55 +00:00
194 lines
6.0 KiB
C++
194 lines
6.0 KiB
C++
#pragma once
|
|
|
|
#include <cstdint>
|
|
|
|
// note: do not add high-level objects here, such as llama_context, llama_kv_cache, etc.
|
|
// not sure about llama_batch/llama_sbatch yet
|
|
|
|
struct ggml_cgraph;
|
|
struct ggml_context;
|
|
struct ggml_tensor;
|
|
struct ggml_backend_buffer;
|
|
struct llama_ubatch;
|
|
|
|
struct llama_graph_result {
|
|
// important graph nodes
|
|
ggml_tensor * t_logits = nullptr;
|
|
ggml_tensor * t_embd = nullptr;
|
|
ggml_tensor * t_embd_pooled = nullptr;
|
|
};
|
|
|
|
// TODO: can become more granular in the future
|
|
class llama_graph_i {
|
|
public:
|
|
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
|
|
virtual void build_cb(
|
|
ggml_tensor * cur,
|
|
const char * name,
|
|
const llama_ubatch & ubatch,
|
|
int il) = 0;
|
|
|
|
// apply control vector for layer il
|
|
virtual ggml_tensor * build_cvec(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * cur,
|
|
int il) = 0;
|
|
|
|
// do mat_mul, while optionally apply lora
|
|
virtual ggml_tensor * build_lora_mm(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * w,
|
|
ggml_tensor * cur) = 0;
|
|
|
|
// do mat_mul_id, while optionally apply lora
|
|
virtual ggml_tensor * build_lora_mm_id(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * w, // struct ggml_tensor * as
|
|
ggml_tensor * cur, // struct ggml_tensor * b
|
|
ggml_tensor * ids) = 0;
|
|
|
|
virtual ggml_tensor * build_rope_factors(int il) = 0;
|
|
|
|
// note: optionally set the backend to be the same as the bbuf's backend
|
|
virtual ggml_tensor * build_rope_shift(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * shift,
|
|
ggml_tensor * factors,
|
|
ggml_backend_buffer * bbuft) = 0;
|
|
|
|
// graph build API (context-specific)
|
|
|
|
virtual ggml_tensor * build_inp_embd(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * tok_embd,
|
|
const llama_ubatch & ubatch) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_pos(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_out_ids(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_mean(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_cls(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens) = 0;
|
|
|
|
virtual void build_attn_inp(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens,
|
|
bool causal,
|
|
bool swa,
|
|
bool worst_case) = 0;
|
|
|
|
virtual void build_attn_kv_store(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * k_cur,
|
|
ggml_tensor * v_cur,
|
|
int32_t n_tokens,
|
|
int64_t il,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_attn_qkv(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * wo,
|
|
ggml_tensor * wo_b,
|
|
ggml_tensor * q_cur,
|
|
int32_t n_tokens,
|
|
float kq_scale,
|
|
int il,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_attn_soft_max(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * kq,
|
|
float kq_scale) = 0;
|
|
|
|
virtual void build_kv_self_shift(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf) = 0;
|
|
|
|
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
|
virtual void build_kv_self_defrag(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_k_shift(
|
|
ggml_context * ctx0) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_embd_enc(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_KQ_mask_cross(
|
|
ggml_context * ctx0,
|
|
int32_t n_tokens,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_s_copy(
|
|
ggml_context * ctx0,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_inp_s_mask(
|
|
ggml_context * ctx0,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_copy_mask_state(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * s,
|
|
ggml_tensor * state_copy,
|
|
ggml_tensor * state_mask,
|
|
int32_t n_tokens,
|
|
int32_t n_state,
|
|
int32_t n_seqs,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_mamba_layer(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * state_copy,
|
|
ggml_tensor * state_mask,
|
|
const llama_ubatch & ubatch,
|
|
int il,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_rwkv_token_shift_load(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * state_copy,
|
|
ggml_tensor * state_mask,
|
|
const llama_ubatch & ubatch,
|
|
int il,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_rwkv_token_shift_store(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * token_shift,
|
|
const llama_ubatch & ubatch,
|
|
int il,
|
|
bool worst_case) = 0;
|
|
|
|
virtual ggml_tensor * build_rwkv6_time_mix(
|
|
ggml_context * ctx0,
|
|
ggml_cgraph * gf,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * x_prev,
|
|
ggml_tensor * state_copy,
|
|
ggml_tensor * state_mask,
|
|
const llama_ubatch & ubatch,
|
|
int il,
|
|
bool worst_case) = 0;
|
|
};
|