Gabe Goodhart edc4a29eff memory : Hybrid recurrent cache (#13979)
* feat: Add llama_model_is_hybrid API call

Also, split llama_model_is_recurrent into llm_arch_is_recurrent in
llama-arch with llama_model_is_recurrent delegating to
llm_arch_is_recurrent. The same split is done for hybird. This is needed
because there are places where the llama_model has not yet been initialized
but we need to check if the model is recurrent (specifically for the
per-layer recurrent check array in hparams).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for attention layer indices hparam

Branch: GraniteFour

* feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: rename *_is_hybrid -> *_is_hybrid_recurrent

The implementation of the hybrid cache intentionally does not specify the
types of the child caches, so there was a naming mismatch with these
predicate functions that used "hybrid" to imply "hybrid recurrent."

Branch: HybridCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add layer filter to recurrent cache

Branch: HybridCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizing everywhere in kv caches

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at llama_kv_cache_hybrid_recurrent

This follows the pattern in iswa where the two child caches are held
explicitly to support the case where a model requires a single attention
cache and a single recurrent cache where each layer uses exactly one of the
caches.

This is a rewrite of the more generic approach in the original hybrid cache
PR: https://github.com/ggml-org/llama.cpp/pull/13276

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Construct hybrid recurrent cache for hybrid recurrent models

This includes a refactor of the create_memory logic to avoid needing to use
the arch enum explicitly unless a model needs explicit cache instantiation
logic beyond the standard logic for recurrent, hybrid, unified, and iswa.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix wrong bool condition for split equal in hybrid cache

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix shift logic to defer to unified cache

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support hybrid recurrent in llama-graph

NOTE: I intentionally did not add support for s_mask since it will be going
away soon

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix logic for initializing inputs and attn layers for hybrid caches

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update recurrent cache for changes to remove intermediate kv_cache interface

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix status for init_update sig for recurrent cache state

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add missing padding to n_ctx for hybrid cache construction

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update clear signature for data argument after rebase

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove errant virtual destructor leftover from previous impl attempt

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove n_embd_k/v_s from unified cache

No longer needed now that unified isn't also supporting recurrent

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069

Branch: HybridRecurrentCache

* refactor: Remove layer index from n_embd_k/v_s

Now that it's not used at all in the unified cache, we don't need to use
the layer index to zero it out for attention layers.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove n_embd_k/v_gqa from recurrent cache

This is no longer needed now that there are separate implementations

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow custom layer filters for hybrid recurrent

This should help support architectures like Falcon H1 where there is
overlap between layers that need attention and recurrent caches.

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove logits_all after rebase

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove llama_model_is_hybrid_Recurrent public API

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use llama_memory_state_ptr for child states in hybrid memory state

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern

https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738

This is a big overhaul to bring consistency between how inputs and per-
layer components are created for attention layers and recurrent layers. The
main changes are:

- Rename class llm_graph_input_s_copy -> llm_graph_input_rs
- Add a corresponding llm_graph_input_rs_hybrid_recurrent
- Rename build_inp_s_copy -> build_rs_inp_recurrent
- Add a corresponding build_rs_inp_hybrid_recurrent
- Rename build_recurrent_state -> build_rs to match build_attn w/
llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a corresponding overload of build_rs w/
llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to
llm_graph_input_attn_kv_unified
- Add a build_attn override that takes
llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input

This makes the two paradigms fully consistent. The main drawback is the
code duplication in the build_attn and build_rs implementations where the
only difference between implementations is how they cast the memory state.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix resize vs reserve and skip null tensors in size computation

https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-Authored-By: @younesbelkada

* fix: Fix initialization of child states

Since initially writing this PR, the logic in the child state types changed
such that using the "init full" signature and keeping the ubatches on the
parent struct no longer worked.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use a common build_recurrent_state method that is cache-agnostic

This reduces the code duplication between the different build_rs impls and
also retains a similar signature to the previous build_recurrent_state
method while standardizing on the input-dispatched build_rs implementation.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* recurrent : rework graph inputs + add TODOs

ggml-ci

* refactor: Make status and child states const in hybrid and iswa

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache

This removes the notion of "kv" from the interface names for these memory
types. There are still many references to kv in the implementation of the
recurrent memory which will need further adjustment.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor!: Rename all k/v related values for recurrent/hybrid to r/s

Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more
generic "mem_" prefix. The specifics of "k" (key) translate to "r"
(recurrent state) and "v" (value) translate to "s" (state-space embedding
states).

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refacor: _recurrent -> _recr for brevity

It just _happens_ to have the same number of letters as _attn!

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix spacing for ref

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: recurrent_layer() -> is_recurrent()

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix spacing for size_s_bytes declaration

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 08:08:14 +03:00
2025-06-13 18:32:56 +02:00
2025-06-19 08:05:21 +03:00
2025-06-16 14:53:41 +02:00
2023-12-01 20:16:31 +02:00
2025-06-18 09:59:21 +03:00
2025-05-30 16:25:45 +03:00
2025-05-30 16:25:45 +03:00
2025-03-08 18:26:00 +02:00
2024-11-24 08:03:25 -08:00
2025-06-13 11:55:44 +03:00

llama.cpp

llama

License: MIT Release Server

Roadmap / Manifesto / ggml

Inference of Meta's LLaMA model (and others) in pure C/C++

Recent API changes

Hot topics


Quick start

Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:

Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.

Example command:

# Use a local model file
llama-cli -m my_model.gguf

# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models

Typically finetunes of the base models below are supported as well.

Instructions for adding support for new models: HOWTO-add-model.md

Text-only

Multimodal

Bindings
UIs

(to have a project listed here, it should clearly state that it depends on llama.cpp)

Tools
  • akx/ggify download PyTorch models from HuggingFace Hub and convert them to GGML
  • akx/ollama-dl download models from the Ollama library to be used directly with llama.cpp
  • crashr/gppm launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
  • gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
  • Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure
  • Paddler - Stateful load balancer custom-tailored for llama.cpp
  • GPUStack - Manage GPU clusters for running LLMs
  • llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
  • llama-swap - transparent proxy that adds automatic model switching with llama-server
  • Kalavai - Crowdsource end to end LLM deployment at any scale
  • llmaz - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games
  • Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads GPU
CUDA Nvidia GPU
HIP AMD GPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU
RPC All

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:

llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode

    Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding -cnv and specifying a suitable chat template with --chat-template NAME

    llama-cli -m model.gguf
    
    # > hi, who are you?
    # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
    #
    # > what is 1+1?
    # Easy peasy! The answer to 1+1 is... 2!
    
  • Run in conversation mode with custom chat template
    # use the "chatml" template (use -h to see the list of supported templates)
    llama-cli -m model.gguf -cnv --chat-template chatml
    
    # use a custom template
    llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
    
  • Run simple text completion

    To disable conversation mode explicitly, use -no-cnv

    llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
    
    # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga  it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
    
  • Constrain the output with a custom grammar
    llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
    
    # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
    

    The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

    For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080
    llama-server -m model.gguf --port 8080
    
    # Basic web UI can be accessed via browser: http://localhost:8080
    # Chat completion endpoint: http://localhost:8080/v1/chat/completions
    
  • Support multiple-users and parallel decoding
    # up to 4 concurrent requests, each with 4096 max context
    llama-server -m model.gguf -c 16384 -np 4
    
  • Enable speculative decoding
    # the draft.gguf model should be a small variant of the target model.gguf
    llama-server -m model.gguf -md draft.gguf
    
  • Serve an embedding model
    # use the /embedding endpoint
    llama-server -m model.gguf --embedding --pooling cls -ub 8192
    
  • Serve a reranking model
    # use the /reranking endpoint
    llama-server -m model.gguf --reranking
    
  • Constrain all outputs with a grammar
    # custom grammar
    llama-server -m model.gguf --grammar-file grammar.gbnf
    
    # JSON
    llama-server -m model.gguf --grammar-file grammars/json.gbnf
    

llama-perplexity

A tool for measuring the perplexity 1 2 (and other quality metrics) of a model over a given text.

  • Measure the perplexity over a text file
    llama-perplexity -m model.gguf -f file.txt
    
    # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
    # Final estimate: PPL = 5.4007 +/- 0.67339
    
  • Measure KL divergence
    # TODO
    

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark
    llama-bench -m model.gguf
    
    # Output:
    # | model               |       size |     params | backend    | threads |          test |                  t/s |
    # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         pp512 |      5765.41 ± 20.55 |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         tg128 |        197.71 ± 0.81 |
    #
    # build: 3e0ba0e60 (4229)
    

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama 3 .

  • Run a model with a specific prompt (by default it's pulled from Ollama registry)
    llama-run granite-code
    

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion
    llama-simple -m model.gguf
    
    # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
    

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

XCFramework

The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:

// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
    name: "MyLlamaPackage",
    targets: [
        .executableTarget(
            name: "MyLlamaPackage",
            dependencies: [
                "LlamaFramework"
            ]),
        .binaryTarget(
            name: "LlamaFramework",
            url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
            checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
        )
    ]
)

The above example is using an intermediate build b5046 of the library. This can be modified to use a different version by changing the URL and checksum.

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

Dependencies

  • yhirose/cpp-httplib - Single-header HTTP server, used by llama-server - MIT license
  • stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
  • nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
  • minja - Minimal Jinja parser in C++, used by various tools/examples - MIT License
  • linenoise.cpp - C++ library that provides readline-like line editing capabilities, used by llama-run - BSD 2-Clause License
  • curl - Client-side URL transfer library, used by various tools/examples - CURL License
  • miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain
Description
LLM inference in C/C++
Readme MIT 592 MiB
Languages
C++ 57.1%
C 15.2%
Python 8.7%
Cuda 6.6%
Objective-C 2.3%
Other 10.1%