Files
llama.cpp/docs/build-s390x.md
Aaron Teo 60ef23d6c1 ggml-cpu: enable IBM NNPA Vector Intrinsics (#14317)
* ggml-cpu: add nnpa compile flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 4a9f60c201)

* ggml-cpu: add fp16->fp32 nnpa first

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 8d4a7987f9)

* ggml-cpu: add fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0ff0d65162)

* ggml-cpu: better variable names

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 2f58bbcbb8)

* docs: update s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 01b929491b)

* ggml-cpu: add debugging prints to see if dlf16 is correct

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix print vs printf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix float placeholder

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: ensure fp16 and fp32 load and stores are called

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fp16 load ensured to hit

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove sigint from fp16 store

for some reason, the function is not getting a hit when debugged with
    gdb. we will need to investigate further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp16_to_fp32

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa activate ggml_cpu_fp16_to_fp32 for 8 elements

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa switch to vec_xst test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to vec_xst for 4 element loops also

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework noop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove noop, general code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify variable naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp32_to_fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add breakpoint for debugging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test fix for conversion failure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: disable fp32->fp16 nnpa conversions for now

there are some conversion failures in nnpa that requires the eyes of an
ibm stsm. will create a separate pr to introduce the fp32->fp16 change.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to elif macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix compiler types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: change to typedef vector types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add 4 element loops for fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarified vector naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back fp32->fp16 store nnpa

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa fp32->fp16 or fp16->fp32 compute

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add nnpa macro check in ggml-impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add missing __func__

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: diagnose why __NNPA__ macro is not being defined

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: import vecintrin.h to fix compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update macro tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 157f856c34.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to importing ggml-cpu-impl instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix macro declaration

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test more macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add debug prints

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bruteforce macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h to cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to private macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 157f856c34)

* ggml-cpu: move things around

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to quotes for import

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add compiler error macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add s390x detection in ggml-src

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: undo cmakelists work

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 18d79e1a30.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedefs.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedef from cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h future notes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add todo comment for future reference

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify naming of dlf16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove unnecessary target compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa fp16->fp32 and fp32->fp16 to simd-mappings

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update broken huggingface link for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix duplicate func names during compile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: fix duplicate func names during compile"

This reverts commit fbb733451f.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu"

This reverts commit bd288e8fa5.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp16<->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h import in quants.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h within repack

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix amx mmq missing simd-mappings.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: attempt at fixing loongarch failing build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa together with other fp16<->fp32 simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix wrong refactor of ggml-base

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164176555

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove dependency on ggml-cpu from ggml-base

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rename all fp16<->fp32 macros to prefix with ggml_cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164449406

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove mistaken fallback macro

fallback logic was already implemented but i was too sleepy to realise

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures"

This reverts commit 32a3533564.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: move ggml_table_f32_f16 to ggml-cpu"

This reverts commit 9e40d984ad.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 9e40d984ad)

* ggml: move ggml_table_f32_f16 to ggml-cpu.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: extern c ggml_table_f32_f16 + chore docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h

we rely on the variable declaration in ggml-cpu.c instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h"

This reverts commit f71b21d2f7.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back ggml_table_f32_f16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: bring back ggml_table_f32_f16"

This reverts commit 2dce119178.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* fix ggml time initialization

* fix f32_f16 table init

* remove extra line

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: slaren <slarengh@gmail.com>
2025-06-25 23:49:04 +02:00

175 lines
5.7 KiB
Markdown

> [!IMPORTANT]
> This build documentation is specific only to IBM Z & LinuxONE mainframes (s390x). You can find the build documentation for other architectures: [build.md](build.md).
# Build llama.cpp locally (for s390x)
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the code:**
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
## CPU Build with BLAS
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements.
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release -j $(nproc)
```
**Notes**:
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_VXE=OFF
cmake --build build --config Release -j $(nproc)
```
- By default, NNPA is enabled when available. To disable it (not recommended):
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_NNPA=OFF
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Debug \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Debug -j $(nproc)
```
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(nproc)
```
## Getting GGUF Models
All models need to be converted to Big-Endian. You can achieve this in three cases:
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**
You can find popular models pre-converted and verified at [s390x Ready Models](https://huggingface.co/collections/taronaeo/s390x-ready-models-672765393af438d0ccb72a08).
These models and their respective tokenizers are verified to run correctly on IBM Z & LinuxONE.
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**
```bash
python3 convert_hf_to_gguf.py \
--outfile model-name-be.f16.gguf \
--outtype f16 \
--bigendian \
model-directory/
```
For example,
```bash
python3 convert_hf_to_gguf.py \
--outfile granite-3.3-2b-instruct-be.f16.gguf \
--outtype f16 \
--bigendian \
granite-3.3-2b-instruct/
```
3. **Convert existing GGUF Little-Endian model to Big-Endian**
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
```
For example,
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
mv granite-3.3-2b-instruct-le.f16.gguf granite-3.3-2b-instruct-be.f16.gguf
```
**Notes:**
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
## IBM Accelerators
### 1. SIMD Acceleration
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. NNPA Vector Intrinsics Acceleration
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned on when available) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
### 3. zDNN Accelerator
_Only available in IBM z16 or later system. No direction at the moment._
### 4. Spyre Accelerator
_No direction at the moment._
## Performance Tuning
### 1. Virtualization Setup
It is strongly recommended to use only LPAR (Type-1) virtualization to get the most performance.
Note: Type-2 virtualization is not supported at the moment, while you can get it running, the performance will not be the best.
### 2. IFL (Core) Count
It is recommended to allocate a minimum of 8 shared IFLs assigned to the LPAR. Increasing the IFL count past 8 shared IFLs will only improve Prompt Processing performance but not Token Generation.
Note: IFL count does not equate to vCPU count.
### 3. SMT vs NOSMT (Simultaneous Multithreading)
It is strongly recommended to disable SMT via the kernel boot parameters as it negatively affects performance. Please refer to your Linux distribution's guide on disabling SMT via kernel boot parameters.
### 4. BLAS vs NOBLAS
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
Please file an issue in llama.cpp and ensure that the title contains "s390x".
2. **Other Questions**
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).