* Mtmd: add a way to select device for vision encoder
* simplify
* format
* Warn user if manual device selection failed
* initialize backend to nullptr
* imatrix : allow processing multiple chunks per batch
* perplexity : simplify filling the batch
* imatrix : fix segfault when using a single chunk per batch
* imatrix : use GGUF to store imatrix data
* imatrix : fix conversion problems
* imatrix : use FMA and sort tensor names
* py : add requirements for legacy imatrix convert script
* perplexity : revert changes
* py : include imatrix converter requirements in toplevel requirements
* imatrix : avoid using designated initializers in C++
* imatrix : remove unused n_entries
* imatrix : allow loading mis-ordered tensors
Sums and counts tensors no longer need to be consecutive.
* imatrix : more sanity checks when loading multiple imatrix files
* imatrix : use ggml_format_name instead of std::string concatenation
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* quantize : use unused imatrix chunk_size with LLAMA_TRACE
* common : use GGUF for imatrix output by default
* imatrix : two-way conversion between old format and GGUF
* convert : remove imatrix to gguf python script
* imatrix : use the function name in more error messages
* imatrix : don't use FMA explicitly
This should make comparisons between the formats easier
because this matches the behavior of the previous version.
* imatrix : avoid returning from void function save_imatrix
* imatrix : support 3d tensors with MUL_MAT
* quantize : fix dataset name loading from gguf imatrix
* common : move string_remove_suffix from quantize and imatrix
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* imatrix : add warning when legacy format is written
* imatrix : warn when writing partial data, to help guess dataset coverage
Also make the legacy format store partial data
by using neutral values for missing data.
This matches what is done at read-time for the new format,
and so should get the same quality in case the old format is still used.
* imatrix : avoid loading model to convert or combine imatrix
* imatrix : avoid using imatrix.dat in README
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* initial commit for handling extra template kwargs
* enable_thinking and assistant prefill cannot be enabled at the same time
* can set chat_template_kwargs in command line
* added doc
* fixed formatting
* add support for extra context in generic template init
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* coding standard: common/chat.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Apply suggestions from code review
coding standard: cosmetic changes
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix merge conflict
* chat.cpp: simplify calls to apply to ensure systematic propagation of extra_context (+ the odd existing additional_context)
* normalize environment variable name
* simplify code
* prefill cannot be used with thinking models
* compatibility with the new reasoning-budget parameter
* fix prefill for non thinking models
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Olivier Chafik <olivier.chafik@gmail.com>
Mistral Small 2506 models using Pixtral vision encoder were running out
of GPU memory when processing images larger than 1024x1024 pixels due to
exponential memory growth from unlimited image size.
This fix applies the same 1024x1024 limit used by Qwen2VL models to
prevent OOM issues while maintaining compatibility with existing models.
Add no_warmup parameter to cmd_params struct and command-line parsing to allow users to skip warmup runs before benchmarking.
- Add no_warmup boolean field to cmd_params struct
- Add --no-warmup command-line argument parsing
- Add help text documentation for the new flag
- Wrap existing warmup logic in conditional check
- Maintain full backward compatibility (warmup enabled by default)
Addresses #14224
* llama : deprecate llama_kv_self_ API
ggml-ci
* llama : allow llama_memory_(nullptr)
ggml-ci
* memory : add flag for optional data clear in llama_memory_clear
ggml-ci
* threading: support for GGML_SCHED_PRIO_LOW, update thread info on Windows to avoid throttling
We talked about adding LOW priority for GGML threads in the original threadpool PR.
It might be useful for some cases to avoid contention.
Latest Windows ARM64 releases started parking (offlining) the CPU cores
more aggresively which results in suboptimal performance with n_threads > 4.
To deal with that we now disable Power Throttling for our threads for the NORMAL
and higher priorities.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* threading: disable SetThreadInfo() calls for older Windows versions
* Update tools/llama-bench/llama-bench.cpp
Co-authored-by: Diego Devesa <slarengh@gmail.com>
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Replace alert and confirm with custom modals. This is needed as Webview in VS Code doesn't permit alert and confirm for security reasons.
* use Modal Provider to simplify the use of confirm and alert modals.
* Increase the z index of the modal dialogs.
* Update index.html.gz
* also add showPrompt
* rebuild
---------
Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>