ubatch : new splitting logic (#14217)

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-20 10:14:14 +03:00
committed by GitHub
parent 9eaa51e7f0
commit 4c9fdfbe15
19 changed files with 992 additions and 915 deletions

File diff suppressed because it is too large Load Diff

View File

@ -2,86 +2,44 @@
#include "llama.h"
#include "llama-cparams.h"
#include <array>
#include <vector>
#include <set>
#include <bitset>
#include <unordered_map>
// very similar to llama_batch,
// but has more metadata about sequences
// keep this struct lightweight
// it points to data in `llama_batch_allocr`
struct llama_ubatch {
bool equal_seqs;
// TODO: whole_seqs for embeddings?
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
uint32_t n_seq_tokens; // tokens per sequence
uint32_t n_seqs;
uint32_t n_seq_tokens; // tokens per sequence set
uint32_t n_seqs; // sequence sets in the ubatch
uint32_t n_seqs_unq; // unique sequence ids in the ubatch
llama_token * token; // [n_tokens]
float * embd; // [n_embd, n_tokens]
llama_pos * pos; // [n_tokens]
int32_t * n_seq_id; // [n_seqs]
llama_seq_id ** seq_id; // [n_seqs]
int8_t * output; // [n_tokens]
// seq_id_unq: unique sequence ids in the ubatch
// seq_idx: indices of the unique sequence ids in the ubatch in [0, n_seqs_unq)
// used for extracting sequence pooled embeddings
// // size | idx | val
llama_token * token; // [n_tokens] | i | id, token
float * embd; // [n_embd, n_tokens] | i | embd
llama_pos * pos; // [n_tokens] | i | pos
int32_t * n_seq_id; // [n_tokens] | i | -
llama_seq_id ** seq_id; // [n_tokens] | s | s0, s1, seq_id
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id
int32_t * seq_idx; // [LLAMA_MAX_SEQ] | - | seq_idx
int8_t * output; // [n_tokens] | i | -
};
struct llama_sbatch_seq {
int32_t n_seq_id;
llama_seq_id * seq_id;
size_t offset;
size_t length;
};
// sequence-length-aware batch splitting
struct llama_sbatch {
// tokens left in this batch
size_t n_tokens;
size_t n_embd;
// sorted indices into the batch
std::vector<int64_t> ids;
// batch indices of the output
std::vector<int64_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;
// buffers for the ubatches
// TODO: very hacky, this needs a complete rework
struct ubatch_data {
std::vector<llama_token> token;
std::vector<float> embd;
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<int8_t> output;
};
std::vector<ubatch_data> udatas;
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
// simple split, unknown number of sequences of unequal lengths
llama_ubatch split_simple(size_t n_ubatch);
// make batches of equal-length sequences
llama_ubatch split_equal(size_t n_ubatch);
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
llama_sbatch() = default;
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false);
};
// a helper for sanitizing and fulfilling a batch
// a helper for sanitizing, fulfilling and splitting a batch
class llama_batch_allocr {
public:
llama_batch_allocr();
llama_batch_allocr(uint32_t n_pos_per_embd);
// sanitize and auto-gen missing data in the input batch
// memory is optional. if provided will be used to check for sequence continuity and to determine the positions
@ -89,20 +47,57 @@ public:
const llama_batch & batch_inp,
const llama_vocab & vocab,
const llama_memory_i * memory,
bool embd_all);
uint32_t n_embd,
bool output_all);
const llama_batch & get_batch() const;
uint32_t get_n_tokens() const;
uint32_t get_n_outputs() const;
// the array of output indices in the order they were encountered during the ubatch splitting
std::vector<int32_t> & get_out_ids();
// min/max positions of each sequence in the current ubatch
llama_pos seq_pos_min(llama_seq_id seq_id) const;
llama_pos seq_pos_max(llama_seq_id seq_id) const;
// call once before splitting the batch to reset the internal state
void split_reset();
// simple split, unknown number of sequence sets of unequal lengths
llama_ubatch split_simple(uint32_t n_ubatch);
// make ubatches of equal-length sequences sets
llama_ubatch split_equal(uint32_t n_ubatch);
// sequence-set-wise split - each ubatch contains a single sequence-set
llama_ubatch split_seq(uint32_t n_ubatch);
// a helper method for creating a well-defined ubatch of tokens
// TODO: support embeddings if needed in the future
llama_ubatch ubatch_reserve(uint32_t n_seq_tokens, uint32_t n_seqs);
private:
void clear();
// create the next ubatch based on the provided batch indices (idxs) and the number of sequence sets (n_seqs)
// return llama_ubatch.n_tokens == 0 if the entire batch was consumed
llama_ubatch ubatch_add(const std::vector<int32_t> & idxs, uint32_t n_seqs, bool equal_seqs);
// for debugging, start with LLAMA_BATCH_DEBUG=2
void ubatch_print(const llama_ubatch & ubatch, int debug);
llama_batch batch;
// only for debugging purposes
const llama_vocab * vocab;
// TODO: this is more of a temporary solution until we have a better way to handle multiple positions per token/embd
// ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
const uint32_t n_pos_per_embd;
uint32_t n_embd;
uint32_t n_outputs;
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
@ -110,10 +105,43 @@ private:
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<llama_seq_id> seq_id_unq;
std::vector<int32_t> seq_idx;
std::vector<int8_t> output;
std::vector<std::set<llama_pos>> seq_pos; // seq_pos[s]: the set of positions in sequence s
std::vector<std::vector<bool>> seq_cpl; // seq_cpl[s0][s1]: if sequence s0 is coupled to sequence s1
using pos_set_t = std::set<llama_pos>;
using seq_cpl_t = std::vector<bool>;
std::vector<pos_set_t> seq_pos; // seq_pos[s]: the set of positions in sequence s
std::vector<seq_cpl_t> seq_cpl; // seq_cpl[s0][s1]: if sequence s0 is coupled to sequence s1
using idx_vec_t = std::vector<int32_t>;
using seq_set_t = std::bitset<LLAMA_MAX_SEQ>;
std::vector<seq_set_t> seq_set; // seq_set[i]: the sequence set of token i
std::unordered_map<seq_set_t, idx_vec_t> seq_set_map; // the indices at which the sequence set appears
// batch indices of the output
std::vector<int32_t> out_ids;
// used[i] indicates if token i has already been used in a previous ubatch
std::vector<bool> used;
// llama_ubatch points to this data:
struct ubatch {
std::vector<llama_token> token;
std::vector<float> embd;
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<llama_seq_id> seq_id_unq;
std::vector<int32_t> seq_idx;
std::vector<int8_t> output;
};
// current splitting state:
std::vector<ubatch> ubatches;
int debug;
};

View File

@ -20,7 +20,7 @@ llama_context::llama_context(
const llama_model & model,
llama_context_params params) :
model(model),
batch_allocr(std::make_unique<llama_batch_allocr>()) {
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
t_start_us = model.t_start_us;
@ -722,22 +722,26 @@ llm_graph_result_ptr llama_context::process_ubatch(const llama_ubatch & ubatch,
}
int llama_context::encode(const llama_batch & batch_inp) {
GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT
if (batch_inp.n_tokens == 0) {
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
return -1;
}
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
// note: during encode, we always pass the full sequence starting from pos = 0
if (!batch_allocr->init(batch_inp, model.vocab, nullptr, true)) {
if (!balloc->init(batch_inp, model.vocab, nullptr, n_embd, true)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return -1;
}
const llama_batch & batch = batch_allocr->get_batch();
const uint32_t n_tokens = balloc->get_n_tokens();
const uint32_t n_tokens = batch.n_tokens;
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
const llama_ubatch ubatch = balloc->split_simple(n_tokens);
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
@ -751,14 +755,6 @@ int llama_context::encode(const llama_batch & batch_inp) {
n_queued_tokens += n_tokens;
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true);
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
// reserve output buffer
if (output_reserve(n_tokens) < n_tokens) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
@ -817,34 +813,28 @@ int llama_context::encode(const llama_batch & batch_inp) {
{
// extract sequence embeddings
auto & embd_seq_out = embd_seq;
embd_seq_out.clear();
GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
// TODO: fix indexing [UBATCH_IDX]
for (uint32_t i = 0; i < n_tokens; i++) {
const llama_seq_id seq_id = ubatch.seq_id[i][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_RANK:
{
// extract the rerank score - n_cls_out floats per sequence
auto & embd_seq_out = embd_seq;
const uint32_t n_cls_out = hparams.n_cls_out;
// TODO: fix indexing [UBATCH_IDX]
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_cls_out);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_id)*sizeof(float), n_cls_out*sizeof(float));
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
@ -869,12 +859,16 @@ int llama_context::encode(const llama_batch & batch_inp) {
cross.v_embd.resize(cross.n_embd*cross.n_enc);
memcpy(cross.v_embd.data(), embd, ggml_nbytes(t_embd));
const auto & batch = balloc->get_batch();
// remember the sequence ids used during the encoding - needed for cross attention later
cross.seq_ids_enc.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
cross.seq_ids_enc[i].clear();
for (int s = 0; s < batch.n_seq_id[i]; s++) {
llama_seq_id seq_id = batch.seq_id[i][s];
const llama_seq_id seq_id = batch.seq_id[i][s];
cross.seq_ids_enc[i].insert(seq_id);
}
}
@ -884,6 +878,8 @@ int llama_context::encode(const llama_batch & batch_inp) {
}
int llama_context::decode(const llama_batch & batch_inp) {
GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT
if (!memory) {
LLAMA_LOG_DEBUG("%s: cannot decode batches with this context (calling encode() instead)\n", __func__);
return encode(batch_inp);
@ -894,29 +890,24 @@ int llama_context::decode(const llama_batch & batch_inp) {
return -1;
}
// when computing embeddings, all tokens are output
const bool embd_all = cparams.embeddings;
if (!batch_allocr->init(batch_inp, model.vocab, memory.get(), embd_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return -1;
}
const llama_batch & batch = batch_allocr->get_batch();
const auto & vocab = model.vocab;
const auto & hparams = model.hparams;
const int32_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
const uint32_t n_tokens_all = batch.n_tokens;
// when computing embeddings, all tokens are output
const bool output_all = cparams.embeddings;
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return -1;
}
const uint32_t n_outputs_all = batch_allocr->get_n_outputs();
const uint32_t n_tokens_all = balloc->get_n_tokens();
const uint32_t n_outputs_all = balloc->get_n_outputs();
if (embd_all) {
if (output_all) {
// require that all tokens are output
if (n_outputs_all != n_tokens_all) {
LLAMA_LOG_ERROR("%s: pooled embedding requires that all tokens are output (n_outputs_all = %d, n_tokens_all = %d)\n",
@ -945,7 +936,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
llama_memory_state_ptr mstate;
while (true) {
mstate = memory->init_batch(batch, cparams.n_ubatch, embd_all);
mstate = memory->init_batch(*balloc, cparams.n_ubatch, output_all);
if (!mstate) {
return -2;
}
@ -966,19 +957,19 @@ int llama_context::decode(const llama_batch & batch_inp) {
did_optimize = true;
if (kv_self_update(true)) {
LLAMA_LOG_DEBUG("%s: retrying batch size %d after cache optimization\n", __func__, batch.n_tokens);
LLAMA_LOG_DEBUG("%s: retrying batch size %d after cache optimization\n", __func__, balloc->get_n_tokens());
continue;
}
}
LLAMA_LOG_WARN("%s: failed to find a memory slot for batch of size %d\n", __func__, batch.n_tokens);
LLAMA_LOG_WARN("%s: failed to find a memory slot for batch of size %d\n", __func__, balloc->get_n_tokens());
return 1;
}
case LLAMA_MEMORY_STATUS_FAILED_COMPUTE:
{
LLAMA_LOG_ERROR("%s: compute failed while preparing batch of size %d\n", __func__, batch.n_tokens);
LLAMA_LOG_ERROR("%s: compute failed while preparing batch of size %d\n", __func__, balloc->get_n_tokens());
return -2;
}
@ -1005,7 +996,6 @@ int llama_context::decode(const llama_batch & batch_inp) {
if (n_outputs_all == n_tokens_all) {
n_outputs_new = ubatch.n_tokens;
} else {
GGML_ASSERT(ubatch.output);
for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
n_outputs_new += (int32_t) (ubatch.output[i] != 0);
}
@ -1105,27 +1095,27 @@ int llama_context::decode(const llama_batch & batch_inp) {
// extract sequence embeddings (cleared before processing each batch)
auto & embd_seq_out = embd_seq;
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_RANK:
{
// extract the rerank score - a single float per sequence
// extract the rerank score - n_cls_out floats per sequence
auto & embd_seq_out = embd_seq;
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
embd_seq_out[seq_id].resize(1);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
const uint32_t n_cls_out = hparams.n_cls_out;
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_cls_out);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
@ -1145,7 +1135,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
if (n_outputs > 0) {
bool sorted_output = true;
auto & out_ids = mstate->out_ids();
auto & out_ids = balloc->get_out_ids();
GGML_ASSERT(out_ids.size() == (size_t) n_outputs);
@ -1318,8 +1308,8 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u
this->n_outputs = n_outputs;
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
llama_batch_allocr balloc(model.hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(n_tokens/n_seqs, n_seqs);
auto * gf = graph_init();
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate);
@ -2039,7 +2029,12 @@ void llama_context::opt_epoch_iter(
batch.logits [pos_batch] = true;
}
const auto n_tokens_all = batch.n_tokens;
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, true)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return;
}
const uint32_t n_tokens_all = balloc->get_n_tokens();
n_queued_tokens += n_tokens_all;
@ -2047,7 +2042,7 @@ void llama_context::opt_epoch_iter(
uint32_t n_outputs_all = n_tokens_all;
auto mstate = memory->init_batch(batch, cparams.n_ubatch, true);
auto mstate = memory->init_batch(*balloc, cparams.n_ubatch, true);
if (!mstate || mstate->get_status() != LLAMA_MEMORY_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: could not initialize batch\n", __func__);
break;

View File

@ -247,7 +247,7 @@ private:
std::map<llama_seq_id, std::vector<float>> embd_seq;
// reuse the batch_allocr to avoid unnecessary memory allocations
std::unique_ptr<llama_batch_allocr> batch_allocr;
std::unique_ptr<llama_batch_allocr> balloc;
uint32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch

View File

@ -130,110 +130,97 @@ void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
GGML_ASSERT(mean);
GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
float * data = (float *) mean->data;
memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));
memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
std::vector<uint64_t> sum(n_tokens, 0);
std::vector<uint64_t> sums(n_seqs_unq, 0);
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
sum[seq_id] += ubatch->n_seq_tokens;
}
std::vector<float> div(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
sums[seq_idx] += ubatch->n_seq_tokens;
}
}
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
std::vector<float> div(n_seqs_unq, 0.0f);
for (int s = 0; s < n_seqs_unq; ++s) {
const uint64_t sum = sums[s];
if (sum > 0) {
div[s] = 1.0f/float(sum);
}
}
for (int i = 0; i < n_seq_tokens; ++i) {
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
for (int j = 0; j < n_seq_tokens; ++j) {
data[seq_idx*n_tokens + i + j] = div[seq_idx];
}
}
}
}
}
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
)) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_tokens * ggml_element_size(cls));
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
if (pos == 0) {
data[seq_id] = s*n_seq_tokens + i;
}
data[seq_idx] = i;
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_tokens * ggml_element_size(cls));
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
std::vector<int> last_pos(n_seqs_unq, -1);
std::vector<int> last_row(n_seqs_unq, -1);
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (int i = 0; i < n_tokens; ++i) {
const llama_pos pos = ubatch->pos[i];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = s*n_seq_tokens + i;
if (pos >= last_pos[seq_idx]) {
last_pos[seq_idx] = pos;
last_row[seq_idx] = i;
}
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
for (int s = 0; s < n_seqs_unq; ++s) {
if (last_row[s] >= 0) {
data[s] = last_row[s];
}
}
}
@ -266,89 +253,36 @@ void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
}
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
if (kq_mask) {
if (cparams.causal_attn) {
const int64_t n_kv = ubatch->n_tokens;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
const int64_t n_kv = ubatch->n_tokens;
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
float * data = (float *) kq_mask->data;
GGML_ASSERT(kq_mask);
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
float * data = (float *) kq_mask->data;
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int h = 0; h < 1; ++h) {
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int i0 = 0; i0 < n_tokens; ++i0) {
float f = -INFINITY;
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
const llama_seq_id s0 = ubatch->seq_id[i0][0];
data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
}
// TODO: reimplement this like in llama_kv_cache_unified
if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
} else {
f = 0.0f;
}
break;
}
}
}
} else {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
const int64_t n_stride = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
float * data = (float *) kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
if (ubatch->seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
}
}
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
}
}
data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
}
}
}
@ -371,34 +305,36 @@ void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch
}
void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
if (cross_kq_mask) {
const int64_t n_enc = cross_kq_mask->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(cross_kq_mask);
GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
const int64_t n_enc = cross_kq_mask->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
float * data = (float *) cross_kq_mask->data;
GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_enc; ++i) {
float f = -INFINITY;
// TODO: fix indexing [UBATCH_IDX]
for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[j][s];
if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
f = 0.0f;
}
float * data = (float *) cross_kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_enc; ++j) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
f = 0.0f;
}
data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_enc; ++j) {
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
}
data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_enc; ++j) {
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
}
}
}
@ -467,10 +403,6 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
res (std::make_unique<llm_graph_result>()) {
}
int64_t llm_graph_context::n_pos_per_embd() const {
return hparams.rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
}
void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
if (cb_func) {
cb_func(ubatch, cur, name, il);
@ -915,11 +847,11 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
}
ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
auto & cur = inp->pos;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
ggml_set_input(cur);
res->add_input(std::move(inp));
@ -959,7 +891,7 @@ ggml_tensor * llm_graph_context::build_inp_mean() const {
auto & cur = inp->mean;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
ggml_set_input(cur);
res->add_input(std::move(inp));
@ -972,7 +904,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
auto & cur = inp->cls;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
ggml_set_input(cur);
res->add_input(std::move(inp));

View File

@ -95,14 +95,14 @@ public:
class llm_graph_input_pos : public llm_graph_input_i {
public:
llm_graph_input_pos(int64_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
virtual ~llm_graph_input_pos() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos = nullptr; // I32 [n_batch]
const int64_t n_pos_per_embd = 1;
const uint32_t n_pos_per_embd = 1;
};
// temperature tuning, used by llama4
@ -464,8 +464,6 @@ struct llm_graph_context {
llm_graph_context(const llm_graph_params & params);
int64_t n_pos_per_embd() const;
void cb(ggml_tensor * cur, const char * name, int il) const;
//

View File

@ -90,6 +90,10 @@ bool llama_hparams::is_recurrent(uint32_t il) const {
return recurrent_layer_arr[il];
}
uint32_t llama_hparams::n_pos_per_embd() const {
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
}
bool llama_hparams::is_swa(uint32_t il) const {
if (il < n_layer) {
return swa_layers[il];

View File

@ -192,6 +192,8 @@ struct llama_hparams {
// whether or not the given layer is recurrent (for hybrid models)
bool is_recurrent(uint32_t il) const;
uint32_t n_pos_per_embd() const;
bool is_swa(uint32_t il) const;
};

View File

@ -95,19 +95,22 @@ llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
return kv_swa->seq_pos_max(seq_id);
}
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
GGML_UNUSED(embd_all);
// first try simple split
do {
auto sbatch = llama_sbatch(batch, hparams.n_embd, true);
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = balloc.split_simple(n_ubatch);
while (sbatch.n_tokens > 0) {
auto ubatch = sbatch.split_simple(n_ubatch);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(ubatch);
ubatches.push_back(std::move(ubatch)); // NOLINT
}
auto heads_base = kv_base->prepare(ubatches);
@ -123,19 +126,22 @@ llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch
assert(heads_base.size() == heads_swa.size());
return std::make_unique<llama_kv_cache_unified_iswa_state>(
this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches));
this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
} while (false);
// if it fails, try equal split
do {
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = balloc.split_equal(n_ubatch);
while (sbatch.n_tokens > 0) {
auto ubatch = sbatch.split_equal(n_ubatch);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(ubatch);
ubatches.push_back(std::move(ubatch)); // NOLINT
}
auto heads_base = kv_base->prepare(ubatches);
@ -151,7 +157,7 @@ llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch
assert(heads_base.size() == heads_swa.size());
return std::make_unique<llama_kv_cache_unified_iswa_state>(
this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches));
this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
} while (false);
// TODO: if we fail again, we should attempt different splitting strategies
@ -214,15 +220,13 @@ llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(
llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(
llama_kv_cache_unified_iswa * kv,
llama_sbatch sbatch,
std::vector<uint32_t> heads_base,
std::vector<uint32_t> heads_swa,
std::vector<llama_ubatch> ubatches) :
sbatch(std::move(sbatch)),
ubatches(std::move(ubatches)),
// note: here we copy the ubatches. not sure if this is ideal
state_base(new llama_kv_cache_unified_state(kv->get_base(), {}, std::move(heads_base), this->ubatches)),
state_swa (new llama_kv_cache_unified_state(kv->get_swa (), {}, std::move(heads_swa), this->ubatches)),
state_base(new llama_kv_cache_unified_state(kv->get_base(), std::move(heads_base), this->ubatches)),
state_swa (new llama_kv_cache_unified_state(kv->get_swa (), std::move(heads_swa), this->ubatches)),
status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) {
}
@ -252,12 +256,6 @@ bool llama_kv_cache_unified_iswa_state::apply() {
return res;
}
std::vector<int64_t> & llama_kv_cache_unified_iswa_state::out_ids() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return sbatch.out_ids;
}
llama_memory_status llama_kv_cache_unified_iswa_state::get_status() const {
return status;
}

View File

@ -32,7 +32,7 @@ public:
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) override;
@ -90,7 +90,6 @@ public:
// used to create a state from a batch
llama_kv_cache_unified_iswa_state(
llama_kv_cache_unified_iswa * kv,
llama_sbatch sbatch,
std::vector<uint32_t> heads_base,
std::vector<uint32_t> heads_swa,
std::vector<llama_ubatch> ubatches);
@ -104,8 +103,6 @@ public:
bool next() override;
bool apply() override;
std::vector<int64_t> & out_ids() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
@ -119,8 +116,6 @@ public:
private:
//llama_kv_cache_unified_iswa * kv;
llama_sbatch sbatch;
// the index of the next ubatch to process
size_t i_next = 0;

View File

@ -308,17 +308,23 @@ llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
}
llama_memory_state_ptr llama_kv_cache_unified::init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) {
GGML_UNUSED(embd_all);
do {
auto sbatch = llama_sbatch(batch, hparams.n_embd, true);
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
ubatches.push_back(sbatch.split_simple(n_ubatch));
while (true) {
auto ubatch = balloc.split_simple(n_ubatch);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
auto heads = prepare(ubatches);
@ -327,7 +333,7 @@ llama_memory_state_ptr llama_kv_cache_unified::init_batch(
}
return std::make_unique<llama_kv_cache_unified_state>(
this, std::move(sbatch), std::move(heads), std::move(ubatches));
this, std::move(heads), std::move(ubatches));
} while (false);
return std::make_unique<llama_kv_cache_unified_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
@ -644,12 +650,6 @@ int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const {
}
void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch) {
if (debug > 0) {
LLAMA_LOG_DEBUG("%s: ubatch info:\n", __func__);
LLAMA_LOG_DEBUG("%s: n_tokens = %d, equal_seqs = %d\n", __func__, ubatch.n_tokens, ubatch.equal_seqs);
LLAMA_LOG_DEBUG("%s: n_seq_tokens = %d, n_seqs = %d\n", __func__, ubatch.n_seq_tokens, ubatch.n_seqs);
}
// keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
@ -657,27 +657,22 @@ void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch
seq_pos_max_rm[s] = -1;
}
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
for (uint32_t j = 0; j < ubatch.n_seq_tokens; ++j) {
const uint32_t idx = s*ubatch.n_seq_tokens + j;
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
if (!cells.is_empty(head_cur + i)) {
assert(cells.seq_count(head_cur + i) == 1);
if (!cells.is_empty(head_cur + idx)) {
assert(cells.seq_count(head_cur + idx) == 1);
const llama_seq_id seq_id = cells.seq_get(head_cur + i);
const llama_pos pos = cells.pos_get(head_cur + i);
const llama_seq_id seq_id = cells.seq_get(head_cur + idx);
const llama_pos pos = cells.pos_get(head_cur + idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(head_cur + i);
}
cells.rm(head_cur + idx);
}
cells.pos_set(head_cur + i, ubatch.pos[i]);
cells.pos_set(head_cur + idx, ubatch.pos[idx]);
// TODO: fix indexing [UBATCH_IDX]
for (int32_t i = 0; i < ubatch.n_seq_id[s]; i++) {
cells.seq_add(head_cur + idx, ubatch.seq_id[s][i]);
}
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(head_cur + i, ubatch.seq_id[i][s]);
}
}
@ -696,6 +691,7 @@ void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch
seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
}
}
// move the head at the end of the slot
head = head_cur + ubatch.n_tokens;
}
@ -792,9 +788,7 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
const uint32_t n_seq_tokens = ubatch->n_seq_tokens;
const uint32_t n_seqs = ubatch->n_seqs;
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
float * data = (float *) dst->data;
@ -814,52 +808,48 @@ void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ub
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
for (uint32_t h = 0; h < 1; ++h) {
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (uint32_t i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = ubatch->seq_id[i][0];
for (uint32_t j = 0; j < n_seq_tokens; ++j) {
const uint32_t idx = s*n_seq_tokens + j;
const llama_pos p1 = ubatch->pos[i];
const llama_pos p1 = ubatch->pos[idx];
for (uint32_t j = 0; j < n_kv; ++j) {
float f = 0.0f;
for (uint32_t i = 0; i < n_kv; ++i) {
float f = 0.0f;
bool masked = false;
bool masked = false;
if (cells.is_empty(j)) {
masked = true;
} else {
const llama_pos p0 = cells.pos_get(j);
if (cells.is_empty(i)) {
masked = true;
} else {
const llama_pos p0 = cells.pos_get(i);
// mask the token if not the same sequence
masked = masked || (!cells.seq_has(j, seq_id));
// mask the token if not the same sequence
masked = masked || (!cells.seq_has(i, seq_id));
// mask future tokens
masked = masked || (causal_attn && p0 > p1);
// mask future tokens
masked = masked || (causal_attn && p0 > p1);
// apply SWA if any
masked = masked || (is_masked_swa(p0, p1));
// apply SWA if any
masked = masked || (is_masked_swa(p0, p1));
if (!masked && hparams.use_alibi) {
f = -std::abs(p0 - p1);
}
if (!masked && hparams.use_alibi) {
f = -std::abs(p0 - p1);
}
if (masked) {
f = -INFINITY;
}
data[h*(n_kv*n_tokens) + idx*n_kv + i] = f;
}
if (masked) {
f = -INFINITY;
}
data[h*(n_kv*n_tokens) + i*n_kv + j] = f;
}
}
// mask padded tokens
if (data) {
for (uint32_t j = n_tokens; j < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++j) {
for (uint32_t i = 0; i < n_kv; ++i) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
for (uint32_t i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (uint32_t j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
@ -887,12 +877,12 @@ void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama
const int32_t n_kv = dst->ne[0];
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_kv; ++j) {
// the position when the cells is empty is irrelevant - it will be masked out later in the attention
const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i);
const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
}
}
}
@ -1509,12 +1499,9 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch ubatch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
ubatch.n_tokens = cell_count;
ubatch.n_seq_tokens = cell_count;
ubatch.n_seqs = 1;
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
@ -1746,9 +1733,8 @@ llama_kv_cache_unified_state::llama_kv_cache_unified_state(
llama_kv_cache_unified_state::llama_kv_cache_unified_state(
llama_kv_cache_unified * kv,
llama_sbatch sbatch,
llama_kv_cache_unified::ubatch_heads heads,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sbatch(std::move(sbatch)), heads(std::move(heads)), ubatches(std::move(ubatches)) {
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), heads(std::move(heads)), ubatches(std::move(ubatches)) {
}
llama_kv_cache_unified_state::~llama_kv_cache_unified_state() = default;
@ -1781,12 +1767,6 @@ bool llama_kv_cache_unified_state::apply() {
return true;
}
std::vector<int64_t> & llama_kv_cache_unified_state::out_ids() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return sbatch.out_ids;
}
llama_memory_status llama_kv_cache_unified_state::get_status() const {
return status;
}

View File

@ -57,7 +57,7 @@ public:
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) override;
@ -231,7 +231,6 @@ public:
// used to create a decode state from a batch
llama_kv_cache_unified_state(
llama_kv_cache_unified * kv,
llama_sbatch sbatch,
ubatch_heads heads,
std::vector<llama_ubatch> ubatches);
@ -244,8 +243,6 @@ public:
bool next() override;
bool apply() override;
std::vector<int64_t> & out_ids() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
@ -286,8 +283,6 @@ private:
// batch processing state
//
llama_sbatch sbatch;
// the index of the next ubatch to process
size_t i_next = 0;

View File

@ -384,10 +384,10 @@ private:
//
std::vector<llama_pos> shift;
using bits_t = std::bitset<LLAMA_MAX_SEQ>;
using seq_set_t = std::bitset<LLAMA_MAX_SEQ>;
// the bitset seq[i] tells us which sequences are currently occupying the i-th cell
std::vector<bits_t> seq;
std::vector<seq_set_t> seq;
// the set seq_pos[s] tells us which positions are currently present for sequence s
// this way seq_pos[s].begin() and seq_pos[s].rbegin() give us the min/max positions currently in the cache

View File

@ -32,7 +32,7 @@ llama_memory_hybrid::llama_memory_hybrid(
mem_attn(new llama_kv_cache_unified(
model,
filter_attn == nullptr ?
[&](int32_t il) { return !model.hparams.is_recurrent(il); }
[&](int32_t il) { return !hparams.is_recurrent(il); }
: filter_attn,
type_k,
type_v,
@ -47,7 +47,7 @@ llama_memory_hybrid::llama_memory_hybrid(
mem_recr(new llama_memory_recurrent(
model,
filter_recr == nullptr ?
[&](int32_t il) { return model.hparams.is_recurrent(il); }
[&](int32_t il) { return hparams.is_recurrent(il); }
: filter_recr,
type_r,
type_s,
@ -56,42 +56,49 @@ llama_memory_hybrid::llama_memory_hybrid(
n_seq_max
)) {}
llama_memory_state_ptr llama_memory_hybrid::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled) {
llama_memory_state_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
do {
balloc.split_reset();
// since this includes a recurrent cache, we cannot use split_simple
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
llama_ubatch ubatch;
while (true) {
llama_ubatch ubatch;
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = sbatch.split_seq(n_ubatch);
} else {
ubatch = sbatch.split_equal(n_ubatch);
if (embd_all) {
// if all tokens are output, split by sequence
ubatch = balloc.split_seq(n_ubatch);
} else {
ubatch = balloc.split_equal(n_ubatch);
}
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
ubatches.push_back(ubatch);
}
// prepare the recurrent batches first
if (!mem_recr->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined state at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the recurrent batches first
if (!mem_recr->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined state at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache
auto heads_attn = mem_attn->prepare(ubatches);
if (heads_attn.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache
auto heads_attn = mem_attn->prepare(ubatches);
if (heads_attn.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_memory_hybrid_state>(
this, std::move(heads_attn), std::move(ubatches));
} while(false);
return std::make_unique<llama_memory_hybrid_state>(
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_state_ptr llama_memory_hybrid::init_full() {
@ -188,15 +195,13 @@ llama_memory_hybrid_state::llama_memory_hybrid_state(
llama_memory_hybrid_state::llama_memory_hybrid_state(
llama_memory_hybrid * mem,
llama_sbatch sbatch,
std::vector<uint32_t> heads_attn,
std::vector<llama_ubatch> ubatches) :
sbatch(std::move(sbatch)),
ubatches(std::move(ubatches)),
// note: here we copy the ubatches. not sure if this is ideal
state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), {}, std::move(heads_attn), this->ubatches)),
state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), {}, this->ubatches)),
status(LLAMA_MEMORY_STATUS_SUCCESS) {
state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), std::move(heads_attn), this->ubatches)),
state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), this->ubatches)),
status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) {
}
bool llama_memory_hybrid_state::next() {
@ -223,12 +228,6 @@ bool llama_memory_hybrid_state::apply() {
return res;
}
std::vector<int64_t> & llama_memory_hybrid_state::out_ids() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return sbatch.out_ids;
}
llama_memory_status llama_memory_hybrid_state::get_status() const {
return status;
}

View File

@ -50,9 +50,9 @@ public:
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_pooled) override;
bool embd_all) override;
llama_memory_state_ptr init_full() override;
@ -107,7 +107,6 @@ public:
// init success
llama_memory_hybrid_state(
llama_memory_hybrid * mem,
llama_sbatch sbatch,
std::vector<uint32_t> heads_attn,
std::vector<llama_ubatch> ubatches);
@ -116,8 +115,6 @@ public:
bool next() override;
bool apply() override;
std::vector<int64_t> & out_ids() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
@ -129,8 +126,6 @@ public:
const llama_memory_recurrent_state * get_state_recr() const;
private:
llama_sbatch sbatch;
// the index of the next ubatch to process
size_t i_next = 0;

View File

@ -362,29 +362,31 @@ llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
return result;
}
llama_memory_state_ptr llama_memory_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
llama_memory_state_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
while (true) {
llama_ubatch ubatch;
if (embd_all) {
// if all tokens are output, split by sequence
ubatch = sbatch.split_seq(n_ubatch);
ubatch = balloc.split_seq(n_ubatch);
} else {
ubatch = sbatch.split_equal(n_ubatch);
ubatch = balloc.split_equal(n_ubatch);
}
ubatches.push_back(ubatch);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (!prepare(ubatches)) {
return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_memory_recurrent_state>(this, std::move(sbatch), std::move(ubatches));
return std::make_unique<llama_memory_recurrent_state>(this, std::move(ubatches));
}
llama_memory_state_ptr llama_memory_recurrent::init_full() {
@ -423,9 +425,8 @@ bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches)
}
bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
@ -445,9 +446,11 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
const uint32_t i = s*n_seq_tokens; // first token of sequence set s
const uint32_t n_seq_id = ubatch.n_seq_id[i];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
const llama_seq_id seq_id = ubatch.seq_id[i][j];
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
@ -506,7 +509,8 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
const uint32_t i = s*n_seq_tokens;
const llama_seq_id seq_id = ubatch.seq_id[i][0];
auto & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
@ -530,7 +534,7 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
for (uint32_t i = 0; i < size; ++i) {
for (uint32_t j = 0; j < size; ++j) {
next_empty_cell += 1;
if (next_empty_cell >= size) { next_empty_cell -= size; }
auto & cell = cells[next_empty_cell];
@ -544,8 +548,9 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t i = s*n_seq_tokens;
const int32_t dst_id = s + min;
const int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
const int32_t src_id = cells[ubatch.seq_id[i][0]].tail;
if (dst_id != src_id) {
auto & dst_cell = cells[dst_id];
auto & src_cell = cells[src_id];
@ -555,8 +560,8 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails
for (uint32_t i = 0; i < size; ++i) {
int32_t & tail = cells[i].tail;
for (uint32_t j = 0; j < size; ++j) {
int32_t & tail = cells[j].tail;
if (tail == src_id) {
tail = dst_id;
} else if (tail == dst_id) {
@ -568,7 +573,8 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
const uint32_t i = s*n_seq_tokens;
const llama_pos last_pos = ubatch.pos[i + n_seq_tokens - 1];
const int32_t cell_id = s + min;
auto & cell = cells[cell_id];
@ -576,12 +582,12 @@ bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
__func__, last_pos, cell.pos, ubatch.seq_id[i][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
for (int32_t j = 0; j < ubatch.n_seq_id[i]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[i][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
@ -827,12 +833,9 @@ bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
batch.n_tokens = cell_count;
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
@ -846,12 +849,12 @@ bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell
return false;
}
batch.pos[i] = pos;
ubatch.pos[i] = pos;
}
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
ubatch.n_seq_id[0] = 1;
ubatch.seq_id[0] = &dest_seq_id;
if (!find_slot(batch)) {
if (!find_slot(ubatch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
@ -859,8 +862,8 @@ bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= size);
GGML_ASSERT(cells[head].pos == batch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].pos == ubatch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
@ -1048,8 +1051,7 @@ llama_memory_recurrent_state::llama_memory_recurrent_state(
llama_memory_recurrent_state::llama_memory_recurrent_state(
llama_memory_recurrent * mem,
llama_sbatch sbatch,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {}
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), ubatches(std::move(ubatches)) {}
llama_memory_recurrent_state::~llama_memory_recurrent_state() = default;
@ -1071,12 +1073,6 @@ bool llama_memory_recurrent_state::apply() {
return true;
}
std::vector<int64_t> & llama_memory_recurrent_state::out_ids() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return sbatch.out_ids;
}
llama_memory_status llama_memory_recurrent_state::get_status() const {
return status;
}

View File

@ -35,7 +35,7 @@ public:
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) override;
@ -137,7 +137,6 @@ public:
// used to create a state from a batch
llama_memory_recurrent_state(
llama_memory_recurrent * mem,
llama_sbatch sbatch,
std::vector<llama_ubatch> ubatches);
virtual ~llama_memory_recurrent_state();
@ -149,8 +148,6 @@ public:
bool next() override;
bool apply() override;
std::vector<int64_t> & out_ids() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
@ -173,8 +170,6 @@ private:
llama_memory_recurrent * mem;
llama_sbatch sbatch;
size_t i_next = 0;
std::vector<llama_ubatch> ubatches;

View File

@ -7,6 +7,8 @@
struct llama_ubatch;
class llama_batch_allocr;
class llama_io_write_i;
class llama_io_read_i;
@ -50,9 +52,6 @@ struct llama_memory_state_i {
// return false on failure
virtual bool apply() = 0;
// TODO: this might get reworked in the future when refactoring llama_batch
virtual std::vector<int64_t> & out_ids() = 0;
// get the current ubatch
virtual const llama_ubatch & get_ubatch() const = 0;
@ -71,7 +70,7 @@ struct llama_memory_i {
// return a state object containing the ubatches and KV cache state required to process them
// check the llama_memory_state_i::get_status() for the result
virtual llama_memory_state_ptr init_batch(
const llama_batch & batch,
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) = 0;

View File

@ -3385,38 +3385,6 @@ struct server_context {
llama_set_embeddings(ctx, slot_batched->need_embd());
}
// pad the batch so that batch.n_tokens >= n_slots
// TODO: temporary workaround for https://github.com/ggml-org/llama.cpp/issues/13689
if (slot_batched->need_embd()) {
const int n_slots = slots.size();
if (batch.n_tokens < n_slots) {
std::set<llama_seq_id> seq_ids;
for (int j = 0; j < batch.n_tokens; ++j) {
seq_ids.insert(batch.seq_id[j][0]);
}
// find unused sequence id
llama_seq_id seq_id = -1;
for (int i = 0; i < n_slots; ++i) {
if (seq_ids.find(i) == seq_ids.end()) {
seq_id = i;
}
}
const int n_add = n_slots - batch.n_tokens;
SRV_WRN("adding %d dummy tokens to the batch, seq_id = %d\n", n_add, seq_id);
for (int j = 0; j < n_add; ++j) {
common_batch_add(batch, 0, j, { seq_id }, true);
}
slots[seq_id].cache_tokens.clear();
llama_memory_seq_rm(llama_get_memory(ctx), seq_id, -1, -1);
}
}
int32_t i_next = 0;
// process the created batch of tokens