* wip: llama : separate recurrent states from the KV cache
This will be necessary to support Jamba
(and other recurrent models mixed with Attention).
Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.
* llama : use std::find for seq_nodes in llama_rs_cache
* llama : state checkpoints for recurrent models
* llama : correctly handle more edge cases for the rs cache
* llama : rename many llama_kv_cache_* functions
* llama : remove useless return value for some llama_cache_* functions
* llama : rethink recurrent state cell counts
* llama : begin work on support for variable GQA
This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.
* llama : gracefully fail when not finding hybrid slot
* llama : support Jamba
* llama : fix BERT inference without KV cache
* convert-hf : check for unprocessed Jamba experts
* convert-hf : support Mini-Jamba conversion
* llama : fix Jamba quantization sanity checks
* llama : sequence-length-aware batch splitting
* llama : use equal-sequence-length sub-batches for recurrent models
* ggml : simplify SSM-related operators
* llama : make recurrent state slot allocation contiguous
* llama : adapt internal uses of batches to llama_ubatch
* llama : fix batch split output count for embeddings
* llama : minimize swaps when reordering logits
This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.
* llama : fix edge case finding batch seq_id of split recurrent cell
This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.
* llama : avoid copies for simple batch splits
* ggml : make ggml_ssm_scan not modify its source tensors
* llama : fix shared recurrent tail cell count for small ubatch sizes
Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.
* llama : fix .base() compilation error on Windows
* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL
* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors
The implementation already supported it,
and this makes Mamba's conv step slightly faster.
* mamba : fix non-contiguous usage of ggml_silu
* llama : session saving and reloading for hybrid models
* convert_hf : fix Jamba conversion
* llama : fix mixed signedness comparison
* llama : use unused n_embd_k_gqa in k_shift
This also slightly reduces the diff from the master branch
* llama : begin renaming llama_past back to llama_kv_cache
* llama : remove implicit recurrent state rollbacks
* llama : partially apply clang-format style
* convert : fix jamba conv1d shape squeezing
* graph : add back hybrid memory graph input
But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).
* model : add Jamba to Mamba-specific hparams printing
* jamba : remove redundant nullptr initializations
* model : remove unnecessary prefix for tensor loading constants
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : use ggml_swiglu_split for Mamba
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : make falcon-h1 use shared mamba2 layer builder
* memory : avoid referring to KV in recurrent cache logs
* gguf-py : avoid adding duplicate tensor mappings for Jamba
Some of the tensor names are common with Llama4
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* llama : initial Mamba-2 support
* ggml : SIMD ggml_ssm_scan for Mamba-2
* ggml : improve ggml_mul speed when masking recurrent states
* llama : support running Mamba-Codestral-7B-v0.1
* llama : fix Mamba-2 conv state saving
* ggml : make the ggml_mul fast broadcast path more consistently formatted
* llama : remove unused variable
* llama : add missing break
* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present
The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.
* llama : avoid redundant state copy for Mamba 1 and 2
* metal : attempt to adapt SSM_SCAN for Mamba-2
* metal : fix SSM_SCAN pipeline scope
* metal : use log and exp instead of log1pf and expf in SSM_SCAN
* metal : remove unused arguments for SSM_SCAN
The max index is 31, so trimming the arguments is necessary.
* metal : add back n_seqs to SSM_SCAN args
Whoops, this is needed for the offset in the concatenated output.
* metal : fix SSM_SCAN state head offset
* metal : fix wrong number of tokens per sequence in SSM_SCAN
* ggml : remove unused fast broadcast path in GGML_MUL
This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.
* ggml : avoid multiply by D in GGML_OP_SSM_SCAN
This makes the weight buft detection in src/llama.cpp simpler.
* convert : transpose Mamba-2 A, D and reshape SSM_NORM
This breaks existing conversions of Mamba-2 models
to avoid some reshapes.
Not sure if it's a good idea,
but it makes the graph slightly cleaner.
* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks
* convert : fix flake8 lint
* metal : fix confusion between ; and ,
* metal : add missing args for nb references in ssm_scan_f32_group
* metal : single-user mamba2 inference works
* kv-cache : remove const_cast when setting inputs for s_copy
And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.
* convert : avoid AutoConfig for Mamba and Mamba2 hparams
* kv-cache : allow context shift for recurrent models
* graph : fix recurrent state copies when avoiding copies
Works, but using lambda functions might not be that clean.
* ggml : fix mamba2 ssm scan when compiled with SVE
* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches
* cuda : implement ssm scan for Mamba2
There is still room for improvement, but it works!
* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2
* mamba : fix mismatched new and delete size for llm_build_mamba
Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON
* cuda : graceful fallback for Mamba-1 models with weird embd size
* Add Arcee AFM support
* Add draft update code
* Fix linter and update URL, may still not be final
* Update src/llama-model.cpp
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
* Remote accidental blank line
---------
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Adds:
* Dots1Model to convert_hf_to_gguf.py
* Computation graph code to llama-model.cpp
* Chat template to llama-chat.cpp to detect this model's template.
---
The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.
The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:
* https://huggingface.co/rednote-hilab/dots.llm1.inst
* https://huggingface.co/rednote-hilab/dots.llm1.base
The model architecture is a combination of Qwen and Deepseek parts, as
seen here:
ffe12627b4/src/transformers/models/dots1/modular_dots1.py
* add distilbert
* small fixes
* add note for LLM_ARCH_DISTIL_BERT
* Use MODEL_ARCH.BERT for DistilBert
---------
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
* convert: add support for BertForSequenceClassification
* add support for reranking using BertForSequenceClassification
* merge checks of eos and sep
* fix lint
---------
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
* mtmd : allow multiple modalities at the same time
* refactor mtmd tokenizer
* fix compile
* ok, missing SinusoidsPositionEmbedding
* first working version
* fix style
* more strict validate of n_embd
* refactor if..else to switch
* fix regression
* add test for 3B
* update docs
* fix tokenizing with add_special
* add more tests
* fix test case "huge"
* rm redundant code
* set_position_mrope_1d rm n_tokens
* convert ok, load ok
* warmup ok
* test
* still does not work?
* fix padding
* temporary give up
* fix merge conflict
* build_ultravox()
* rm test
* fix merge conflict
* add necessary mtmd APIs
* first working version (only 4s of audio)
* will this monster compile?
* fix compile
* please compile
* fPIC
* fix windows
* various fixes
* clean up audio_helpers
* fix conversion
* add some debug stuff
* long audio input ok
* adapt the api
* add --audio arg
* final touch UX
* add miniaudio to readme
* fix typo
* refactor kv metadata
* mtmd_default_marker()
* feat: Add GGUF conversion for granitemoeshared
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: hparam and arch plumbing for granitemoeshared
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Split MoE fused tensors for shared experts in conversion
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First WIP cut at model arch in cpp
The hparam and architecture plumbing should be correct, but the
implementation of the shared experts seems to still be broken.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Cleaner (maybe more correct?) splitting for gate/up
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix the input to the shared experts
I had misread that the shared experts take the inputs _before_ the standard
MoE layer and was feeding the output of the MoE to the shared experts.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Avoid architecture-specific checks for Granite MoE Shared
This is a cleaner way that will allow more flexibility in architecture
strings going forward.
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Split granite architectures out of llm_build_llama
This helps de-clutter the llama-family graph construction and allows
granite to diverge further (in preparation for Granite 4).
NOTE: I removed the granite scale factors from llm_build_deci because they
appear to only be there as copy-paste from llm_build_llama. The HF config
does not seem to set those values:
https://huggingface.co/Deci/DeciLM-7B/blob/main/config.json
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Fix compiler warning about uninitialized inp_pos
This should not have been reachable, but it warns on some compliers
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Consoladate GraniteMoEShared into GraniteMoE for conversion
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Consolidate GraniteMoEShared into GraniteMoE on the c++ side
Branch: GraniteMoEShared
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* convert : internvl support
* InternVL3-1B working
* fix regression
* rm mobilevlm from test
* fix conversion
* add test for internvl
* add to list of pre-quant
* restore boi/eoi check
* add clarify comment for norm eps
* mtmd : refactor graph builder
* fix qwen2vl
* clean up siglip cgraph
* pixtral migrated
* move minicpmv to a dedicated build function
* move max_feature_layer to build_llava
* use build_attn for minicpm resampler
* fix windows build
* add comment for batch_size
* also support tinygemma3 test model
* qwen2vl does not use RMS norm
* fix qwen2vl norm (2)