mtmd : add vision support for llama 4 (#13282)

* wip llama 4 conversion

* rm redundant __init__

* fix conversion

* fix conversion

* test impl

* try this

* reshape patch_embeddings_0

* fix view

* rm ffn_post_norm

* cgraph ok

* f32 for pos embd

* add image marker tokens

* Llama4UnfoldConvolution

* correct pixel shuffle

* fix merge conflicts

* correct

* add debug_graph

* logits matched, but it still preceives the image incorrectly

* fix style

* add image_grid_pinpoints

* handle llama 4 preprocessing

* rm load_image_size

* rm unused line

* fix

* small fix 2

* add test & docs

* fix llava-1.6 test

* test: add notion of huge models

* add comment

* add warn about degraded quality
This commit is contained in:
Xuan-Son Nguyen
2025-05-19 13:04:14 +02:00
committed by GitHub
parent f71f40a284
commit 92ecdcc06a
9 changed files with 424 additions and 82 deletions

View File

@ -308,6 +308,7 @@ class ModelBase:
gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
gguf.MODEL_TENSOR.POSNET_NORM1,
gguf.MODEL_TENSOR.POSNET_NORM2,
gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
)
)
or not new_name.endswith(".weight")
@ -2092,6 +2093,26 @@ class Llama4Model(LlamaModel):
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Llama4ForConditionalGeneration")
class Llama4VisionModel(VisionModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.LLAMA4)
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
assert self.hparams["hidden_act"] == "gelu"
self.gguf_writer.add_vision_use_gelu(True)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "multi_modal_projector" in name or "vision_model" in name:
# process vision tensors
if "positional_embedding_vlm" in name and ".weight" not in name:
name += ".weight"
return [(self.map_tensor_name(name), data_torch)]
return []
@ModelBase.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA

View File

@ -74,4 +74,7 @@ NOTE: some models may require large context window, for example: `-c 8192`
(tool_name) -hf ggml-org/InternVL3-2B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-8B-Instruct-GGUF
(tool_name) -hf ggml-org/InternVL3-14B-Instruct-GGUF
# Llama 4 Scout
(tool_name) -hf ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF
```

View File

@ -482,14 +482,15 @@ class MODEL_TENSOR(IntEnum):
V_ENC_EMBD_CLS = auto()
V_ENC_EMBD_PATCH = auto()
V_ENC_EMBD_POS = auto()
V_ENC_INPUT_NORM = auto()
V_ENC_ATTN_Q = auto()
V_ENC_ATTN_Q_NORM = auto()
V_ENC_ATTN_K = auto()
V_ENC_ATTN_K_NORM = auto()
V_ENC_ATTN_V = auto()
V_ENC_INPUT_NORM = auto()
V_ENC_OUTPUT = auto()
V_ENC_OUTPUT_NORM = auto()
V_ENC_ATTN_O = auto()
V_ENC_ATTN_O_NORM = auto()
V_ENC_POST_ATTN_NORM = auto()
V_ENC_FFN_UP = auto()
V_ENC_FFN_GATE = auto()
V_ENC_FFN_DOWN = auto()
@ -749,8 +750,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_ENC_ATTN_K_NORM: "v.blk.{bid}.attn_k_norm",
MODEL_TENSOR.V_ENC_ATTN_V: "v.blk.{bid}.attn_v",
MODEL_TENSOR.V_ENC_INPUT_NORM: "v.blk.{bid}.ln1",
MODEL_TENSOR.V_ENC_OUTPUT: "v.blk.{bid}.attn_out",
MODEL_TENSOR.V_ENC_OUTPUT_NORM: "v.blk.{bid}.ln2",
MODEL_TENSOR.V_ENC_ATTN_O: "v.blk.{bid}.attn_out",
MODEL_TENSOR.V_ENC_ATTN_O_NORM: "v.blk.{bid}.attn_out_norm",
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: "v.blk.{bid}.ln2",
MODEL_TENSOR.V_ENC_FFN_UP: "v.blk.{bid}.ffn_up",
MODEL_TENSOR.V_ENC_FFN_GATE: "v.blk.{bid}.ffn_gate",
MODEL_TENSOR.V_ENC_FFN_DOWN: "v.blk.{bid}.ffn_down",
@ -785,14 +787,15 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_ENC_EMBD_CLS,
MODEL_TENSOR.V_ENC_EMBD_PATCH,
MODEL_TENSOR.V_ENC_EMBD_POS,
MODEL_TENSOR.V_ENC_INPUT_NORM,
MODEL_TENSOR.V_ENC_ATTN_Q,
MODEL_TENSOR.V_ENC_ATTN_Q_NORM,
MODEL_TENSOR.V_ENC_ATTN_K,
MODEL_TENSOR.V_ENC_ATTN_K_NORM,
MODEL_TENSOR.V_ENC_ATTN_V,
MODEL_TENSOR.V_ENC_INPUT_NORM,
MODEL_TENSOR.V_ENC_OUTPUT,
MODEL_TENSOR.V_ENC_OUTPUT_NORM,
MODEL_TENSOR.V_ENC_ATTN_O,
MODEL_TENSOR.V_ENC_ATTN_O_NORM,
MODEL_TENSOR.V_ENC_POST_ATTN_NORM,
MODEL_TENSOR.V_ENC_FFN_UP,
MODEL_TENSOR.V_ENC_FFN_GATE,
MODEL_TENSOR.V_ENC_FFN_DOWN,
@ -2180,6 +2183,7 @@ class VisionProjectorType:
GEMMA3 = "gemma3"
IDEFICS3 = "idefics3"
PIXTRAL = "pixtral"
LLAMA4 = "llama4"
QWEN2VL = "qwen2vl_merger"
QWEN25VL = "qwen2.5vl_merger"
INTERNVL = "internvl"

View File

@ -902,10 +902,12 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ_FC: (
"model.connector.modality_projection.proj", # SmolVLM
"multi_modal_projector.linear_1", # llama 4
),
MODEL_TENSOR.V_MMPROJ_MLP: (
"model.mm_projector.mlp.mlp.{bid}",
"vision_model.vision_adapter.mlp.fc{bid}", # llama 4
"mlp1.{bid}", # InternVL
),
@ -915,6 +917,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_EMBD_CLS: (
"vision_tower.vision_model.embeddings.class_embedding",
"vision_model.class_embedding", # llama 4
),
MODEL_TENSOR.V_ENC_EMBD_PATCH: (
@ -922,6 +925,7 @@ class TensorNameMap:
"vpm.embeddings.patch_embedding",
"model.vision_model.embeddings.patch_embedding", # SmolVLM
"vision_tower.patch_conv", # pixtral
"vision_model.patch_embedding.linear", # llama 4
"visual.patch_embed.proj", # qwen2vl
),
@ -929,12 +933,14 @@ class TensorNameMap:
"vision_tower.vision_model.embeddings.position_embedding",
"vpm.embeddings.position_embedding",
"model.vision_model.embeddings.position_embedding", # SmolVLM
"vision_model.positional_embedding_vlm", # llama 4
),
MODEL_TENSOR.V_ENC_ATTN_Q: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
"vpm.encoder.layers.{bid}.self_attn.q_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
),
@ -947,6 +953,7 @@ class TensorNameMap:
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
"vpm.encoder.layers.{bid}.self_attn.k_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
),
@ -959,6 +966,7 @@ class TensorNameMap:
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
"vpm.encoder.layers.{bid}.self_attn.v_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
),
@ -969,23 +977,26 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.layer_norm1",
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
"vision_model.model.layers.{bid}.input_layernorm", # llama4
"visual.blocks.{bid}.norm1", # qwen2vl
),
MODEL_TENSOR.V_ENC_OUTPUT: (
MODEL_TENSOR.V_ENC_ATTN_O: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
"vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
"vpm.encoder.layers.{bid}.self_attn.out_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
"visual.blocks.{bid}.attn.proj", # qwen2vl
),
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
"vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
"vpm.encoder.layers.{bid}.layer_norm2",
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
"vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
"visual.blocks.{bid}.norm2", # qwen2vl
),
@ -995,6 +1006,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.mlp.fc1",
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
"vision_model.model.layers.{bid}.mlp.fc1", # llama4
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
),
@ -1009,6 +1021,7 @@ class TensorNameMap:
"vpm.encoder.layers.{bid}.mlp.fc2",
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
"vision_model.model.layers.{bid}.mlp.fc2", # llama4
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
),
@ -1024,11 +1037,13 @@ class TensorNameMap:
MODEL_TENSOR.V_PRE_NORM: (
"vision_tower.vision_model.pre_layrnorm",
"vision_tower.ln_pre", # pixtral
"vision_model.layernorm_pre", # llama4
),
MODEL_TENSOR.V_POST_NORM: (
"vision_tower.vision_model.post_layernorm",
"model.vision_model.post_layernorm", # SmolVLM
"vision_model.layernorm_post", # llama4
"visual.merger.ln_q", # qwen2vl
),

View File

@ -4,6 +4,7 @@
#include <climits>
#include <cstdarg>
#include <cinttypes>
#include <string>
#include <map>
#include <sstream>
@ -44,7 +45,7 @@
// tensor name constants
//
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_POS_EMBD "v.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
@ -110,6 +111,7 @@ enum projector_type {
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_INTERNVL,
PROJECTOR_TYPE_LLAMA4,
PROJECTOR_TYPE_UNKNOWN,
};
@ -125,6 +127,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
{ PROJECTOR_TYPE_LLAMA4, "llama4"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
@ -240,6 +243,11 @@ struct clip_image_u8_batch {
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
// for llava-uhd style models, we need to know the grid size
// note: entries.size() == grid_x * grid_y + 1 (one overview image)
int grid_x = 0;
int grid_y = 0;
clip_image_f32_batch clone() const {
clip_image_f32_batch new_batch;
new_batch.entries.reserve(entries.size());
@ -358,6 +366,70 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
}
}
//
// debugging
//
static void print_tensor_shape(ggml_tensor * t) {
printf("%s.shape = [", t->name);
for (int i = 0; i < ggml_n_dims(t); ++i) {
printf("%" PRId64, t->ne[i]);
if (i < ggml_n_dims(t) - 1) {
printf(", ");
}
}
printf("]\n");
}
static void print_tensor_data(ggml_tensor * t, uint8_t * data, int64_t n) {
ggml_type type = t->type;
int64_t * ne = t->ne;
size_t * nb = t->nb;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
printf("%s.data: [\n", t->name);
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2*n) {
printf(" ..., \n");
i2 = ne[2] - n;
}
printf(" [\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2*n) {
printf(" ..., \n");
i1 = ne[1] - n;
}
printf(" [");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2*n) {
printf("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
printf("%8.4f", v);
if (i0 < ne[0] - 1) printf(", ");
}
printf("],\n");
}
printf(" ],\n");
}
printf(" ]\n");
}
}
//
// API used internally with mtmd
//

View File

@ -359,9 +359,12 @@ struct clip_ctx {
int max_nodes = 8192;
ggml_backend_sched_ptr sched;
clip_image_size load_image_size;
// for debugging
bool debug_graph = false;
std::vector<ggml_tensor *> debug_print_tensors;
clip_ctx(clip_context_params & ctx_params) {
debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
if (!backend_cpu) {
throw std::runtime_error("failed to initialize CPU backend");
@ -440,7 +443,7 @@ struct clip_graph {
};
ctx0_ptr.reset(ggml_init(params));
ctx0 = ctx0_ptr.get();
gf = ggml_new_graph(ctx0);
gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
}
ggml_cgraph * build_siglip() {
@ -522,7 +525,7 @@ struct clip_graph {
ggml_set_input(pos_w);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta);
return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
};
ggml_tensor * inp = build_inp();
@ -936,6 +939,101 @@ struct clip_graph {
return gf;
}
ggml_cgraph * build_llama4() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1; // +1 for [CLS]
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * inp = build_inp_raw();
// Llama4UnfoldConvolution
{
ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
patch_size, patch_size, 3, n_embd);
inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
cb(inp, "patch_conv", -1);
}
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// build ViT with 2D position embeddings
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
// first half is X axis and second half is Y axis
// ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
// ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
};
ggml_tensor * cur = build_vit(
inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
model.position_embeddings,
add_pos);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
// based on Llama4VisionPixelShuffleMLP
// https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
{
const int scale_factor = model.hparams.proj_scale_factor;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
GGML_ASSERT(scale_factor > 0);
GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
cur = ggml_reshape_4d(ctx0, cur,
n_embd * scale_factor,
n_patches_x / scale_factor,
n_patches_y,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
n_patches_x / scale_factor,
n_patches_y / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
n_patches / scale_factor / scale_factor);
cb(cur, "pixel_shuffle", -1);
}
// based on Llama4VisionMLP2 (always uses GELU activation, no bias)
{
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
cur = ggml_gelu(ctx0, cur);
cb(cur, "adapter_mlp", -1);
}
// Llama4MultiModalProjector
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
cb(cur, "projected", -1);
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// this graph is used by llava, granite and glm
// due to having embedding_stack (used by granite), we cannot reuse build_vit
ggml_cgraph * build_llava() {
@ -1315,11 +1413,15 @@ private:
// utility functions
//
void cb(ggml_tensor * cur, const char * name, int il) const {
// TODO: implement this
GGML_UNUSED(cur);
GGML_UNUSED(name);
GGML_UNUSED(il);
void cb(ggml_tensor * cur0, const char * name, int il) const {
if (ctx->debug_graph) {
ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
ggml_set_name(cur, cur_name.c_str());
ggml_set_output(cur);
ggml_build_forward_expand(gf, cur);
ctx->debug_print_tensors.push_back(cur);
}
}
// build vision transformer (ViT) cgraph
@ -1630,9 +1732,10 @@ private:
static ggml_tensor * build_rope_2d(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * pos_h,
ggml_tensor * pos_w,
const float freq_base
ggml_tensor * pos_a, // first half
ggml_tensor * pos_b, // second half
const float freq_base,
const bool interleave_freq
) {
const int64_t n_dim = cur->ne[0];
const int64_t n_head = cur->ne[1];
@ -1646,7 +1749,9 @@ private:
// ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
// then for the second half, we use freq_scale to shift the inv_freq
// ^ why? replace (2i) with (2i+1) in the above equation
const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
const float freq_scale_odd = interleave_freq
? std::pow(freq_base, (float)-2/n_dim)
: 1.0;
// first half
ggml_tensor * first;
@ -1659,7 +1764,7 @@ private:
first = ggml_rope_ext(
ctx0,
first,
pos_h, // positions
pos_a, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
@ -1679,7 +1784,7 @@ private:
second = ggml_rope_ext(
ctx0,
second,
pos_w, // positions
pos_b, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
@ -1723,6 +1828,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
res = graph.build_internvl();
} break;
case PROJECTOR_TYPE_LLAMA4:
{
res = graph.build_llama4();
} break;
default:
{
res = graph.build_llava();
@ -1926,6 +2035,21 @@ struct clip_model_loader {
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
} break;
case PROJECTOR_TYPE_LLAMA4:
{
hparams.rope_theta = 10000.0f;
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
// borrowed from llava-1.6
const int isize = hparams.image_size;
hparams.image_grid_pinpoints = {
isize, isize*2, // 336, 672
isize*2, isize, // 672, 336
isize*2, isize*2, // 672, 672
isize*3, isize, // 1008, 336
isize, isize*3, // 336, 1008
};
} break;
default:
break;
}
@ -1946,6 +2070,10 @@ struct clip_model_loader {
LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
if (ctx_clip.proj_type == PROJECTOR_TYPE_LLAMA4) {
LOG_WRN("%s: llama 4 vision is known to have degraded quality: https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__);
}
}
}
@ -2001,7 +2129,7 @@ struct clip_model_loader {
vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
vision_model.position_embeddings = get_tensor(TN_POS_EMBD, false);
// layers
vision_model.layers.resize(hparams.n_layer);
@ -2182,6 +2310,12 @@ struct clip_model_loader {
vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
} break;
case PROJECTOR_TYPE_LLAMA4:
{
vision_model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
} break;
default:
GGML_ASSERT(false && "unknown projector type");
}
@ -2328,14 +2462,6 @@ struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_p
return ctx_clip;
}
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
ctx_clip->load_image_size = *load_image_size; // copy
}
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
return &ctx_clip->load_image_size;
}
struct clip_image_size * clip_image_size_init() {
struct clip_image_size * load_image_size = new struct clip_image_size();
load_image_size->width = 448;
@ -2849,7 +2975,7 @@ private:
// used by llava 1.6 with custom list of pinpoints
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
std::vector<clip_image_size> possible_resolutions;
std::vector<clip_image_size> possible_resolutions; // TODO @ngxson : construct this inside hparams, not here
for (size_t i = 0; i < pinpoints.size(); i += 2) {
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
}
@ -2916,12 +3042,6 @@ private:
}
};
// TODO @ngxson : decprecate the load_image_size singleton pattern
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
return inst.grid_size.width;
}
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
@ -2943,9 +3063,12 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = inst.grid_size.width;
res_imgs->grid_y = inst.grid_size.height;
return true;
}
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
} else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
clip_image_u8 resized;
auto patch_size = params.patch_size * 2;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
@ -2971,8 +3094,8 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
} else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
clip_image_u8 resized_image;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
@ -2980,6 +3103,22 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
} else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) {
GGML_ASSERT(!params.image_grid_pinpoints.empty());
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = inst.grid_size.width;
res_imgs->grid_y = inst.grid_size.height;
return true;
}
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
@ -3098,6 +3237,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
const auto & params = ctx->vision_model.hparams;
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
int scale_factor = ctx->vision_model.hparams.proj_scale_factor;
if (ctx->proj_type == PROJECTOR_TYPE_LDP
|| ctx->proj_type == PROJECTOR_TYPE_LDPV2
@ -3136,6 +3276,8 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
} else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) {
n_patches /= (scale_factor * scale_factor);
}
return n_patches;
@ -3247,6 +3389,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
// build the inference graph
ctx->debug_print_tensors.clear();
ggml_backend_sched_reset(ctx->sched.get());
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
@ -3261,8 +3404,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
const int pos_w = ctx->load_image_size.width / patch_size;
const int pos_h = ctx->load_image_size.height / patch_size;
const int pos_w = image_size_width / patch_size;
const int pos_h = image_size_height / patch_size;
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
@ -3528,6 +3671,23 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
{
// do nothing
} break;
case PROJECTOR_TYPE_LLAMA4:
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
// last pos is always kept 0, it's for CLS
// dimension H
for (int i = 0; i < num_patches; i++) {
pos_data[i] = (i / n_patches_per_col) + 1;
}
set_input_i32("pos_h", pos_data);
// dimension W
for (int i = 0; i < num_patches; i++) {
pos_data[i] = (i % n_patches_per_col) + 1;
}
set_input_i32("pos_w", pos_data);
} break;
default:
GGML_ABORT("Unknown projector type");
}
@ -3548,6 +3708,18 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
return false;
}
// print debug nodes
if (ctx->debug_graph) {
LOG_INF("\n\n---\n\n");
LOG_INF("\n\nDebug graph:\n\n");
for (ggml_tensor * t : ctx->debug_print_tensors) {
std::vector<uint8_t> data(ggml_nbytes(t));
ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
print_tensor_shape(t);
print_tensor_data(t, data.data(), 3);
}
}
// the last node is the embedding tensor
ggml_tensor * embeddings = ggml_graph_node(gf, -1);
@ -3596,6 +3768,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.projection->ne[1];
case PROJECTOR_TYPE_INTERNVL:
return ctx->vision_model.mm_3_w->ne[1];
case PROJECTOR_TYPE_LLAMA4:
return ctx->vision_model.mm_model_proj->ne[1];
default:
GGML_ABORT("Unknown projector type");
}

View File

@ -47,10 +47,6 @@ int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 *
// this should be equal to the embedding dimension of the text model
int clip_n_mmproj_embd(const struct clip_ctx * ctx);
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
struct clip_image_size * clip_image_size_init(void);
struct clip_image_u8 * clip_image_u8_init (void);
struct clip_image_f32 * clip_image_f32_init(void);

View File

@ -42,6 +42,7 @@ enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_NONE,
MTMD_SLICE_TMPL_MINICPMV_2_5,
MTMD_SLICE_TMPL_MINICPMV_2_6,
MTMD_SLICE_TMPL_LLAMA4,
// TODO @ngxson : add support for idefics (SmolVLM)
};
@ -64,15 +65,19 @@ struct mtmd_context {
int n_threads;
std::string image_marker;
// for minicpmv, we need special tokens in-between slices
// for llava-uhd style models, we need special tokens in-between slices
// minicpmv calls them "slices", llama 4 calls them "tiles"
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice end
llama_token tok_sli_img_mid = LLAMA_TOKEN_NULL; // between 2 slices
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
bool tok_row_end_trail = false;
bool ov_img_first = false;
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
@ -96,6 +101,7 @@ struct mtmd_context {
use_mrope = clip_is_qwen2vl(ctx_clip);
projector_type proj = clip_get_projector_type(ctx_clip);
int minicpmv_version = clip_is_minicpmv(ctx_clip);
if (minicpmv_version == 2) {
// minicpmv 2.5 format:
@ -108,6 +114,8 @@ struct mtmd_context {
tok_sli_img_start = tok_ov_img_start;
tok_sli_img_end = tok_ov_img_end;
tok_row_end = lookup_token("\n");
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
} else if (minicpmv_version == 3 || minicpmv_version == 4) {
// minicpmv 2.6 format:
@ -118,9 +126,25 @@ struct mtmd_context {
tok_sli_img_start = lookup_token("<slice>");
tok_sli_img_end = lookup_token("</slice>");
tok_row_end = lookup_token("\n");
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
} else if (minicpmv_version != 0) {
GGML_ASSERT(false && "unsupported minicpmv version");
} else if (proj == PROJECTOR_TYPE_LLAMA4) {
// llama 4 format:
// <|image_start|>
// (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
// (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
// ... <|tile_y_separator|> <-- trailing end-of-row token
// <|image|> (overview) <-- overview image is last
// <|image_end|>
slice_tmpl = MTMD_SLICE_TMPL_LLAMA4;
tok_ov_img_start = lookup_token("<|image|>");
tok_sli_img_mid = lookup_token("<|tile_x_separator|>");
tok_row_end = lookup_token("<|tile_y_separator|>");
tok_row_end_trail = true; // add trailing end-of-row token
ov_img_first = false; // overview image is last
}
}
@ -243,16 +267,18 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
marker_modified = ctx->image_marker + "[IMG_END]";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
} else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
marker_modified = "<|vision_start|>" + ctx->image_marker + "<|vision_end|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
} else if (proj_type == PROJECTOR_TYPE_LLAMA4) {
// (more details in mtmd_context constructor)
marker_modified = "<|image_start|>" + ctx->image_marker + "<|image_end|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
else if (proj_type == PROJECTOR_TYPE_INTERNVL) {
} else if (proj_type == PROJECTOR_TYPE_INTERNVL) {
// <img> ... (image embeddings) ... </img>
marker_modified = "<img>" + ctx->image_marker + "</img>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
@ -328,7 +354,6 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
img_u8->ny = bitmaps[i_img]->ny;
img_u8->buf.resize(bitmaps[i_img]->data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img]->data.data(), img_u8->nx * img_u8->ny * 3);
clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
// preprocess image
clip_image_f32_batch batch_f32;
@ -338,28 +363,40 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
return 2;
}
if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
// handle llava-uhd style preprocessing
if (
ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
) {
// split batch into chunks of single images
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img]->id);
GGML_ASSERT(chunks.size() > 0);
// add overview image
add_text_chunk({ctx->tok_ov_img_start});
output->entries.emplace_back(std::move(chunks.front()));
auto ov_chunk = std::move(chunks.front());
chunks.erase(chunks.begin());
add_text_chunk({ctx->tok_ov_img_end});
// add slices
// add overview image (first)
if (ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_ov_img_start});
}
output->entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_ov_img_end});
}
}
// add slices (or tiles)
if (!chunks.empty()) {
clip_add_load_image_size(ctx->ctx_clip, &img_u8_size);
int n_col = clip_uhd_num_image_embeds_col(ctx->ctx_clip);
int n_row = (int)chunks.size() / n_col;
GGML_ASSERT(n_row * n_col == (int)chunks.size());
const int n_col = batch_f32.grid_x;
const int n_row = batch_f32.grid_y;
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_slices_start});
}
for (int y = 0; y < n_row; y++) {
for (int x = 0; x < n_col; x++) {
const bool is_last_in_row = (x == n_col - 1);
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_start});
}
@ -367,8 +404,11 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_end});
}
if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_mid});
}
}
if (ctx->tok_row_end != LLAMA_TOKEN_NULL && y != n_row - 1) {
if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_row_end});
}
}
@ -377,6 +417,17 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
}
}
// add overview image (last)
if (!ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_ov_img_start});
}
output->entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_ov_img_end});
}
}
} else {
size_t n_tokens = 0;
for (const auto & entry : batch_f32.entries) {
@ -427,14 +478,6 @@ int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens)
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = false;
// only effective for minicpmv and qwen2vl, other models will ignore load_image_size
{
clip_image_size slice_size{
image_tokens->batch_f32.entries[0]->nx,
image_tokens->batch_f32.entries[0]->ny};
clip_add_load_image_size(ctx->ctx_clip, &slice_size);
}
if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
const auto & entries = image_tokens->batch_f32.entries;

View File

@ -21,6 +21,13 @@ if [ "${1:-}" = "big" ]; then
echo "Include BIG models..."
fi
RUN_HUGE_TESTS=false
if [ "${1:-}" = "huge" ]; then
RUN_HUGE_TESTS=true
RUN_BIG_TESTS=true
echo "Include BIG models..."
fi
###############
arr_bin=()
@ -42,7 +49,7 @@ add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna"
add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K" "vicuna"
add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K_M" "vicuna"
add_test "llama-mtmd-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-mtmd-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
@ -60,10 +67,17 @@ if [ "$RUN_BIG_TESTS" = true ]; then
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-8B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-8B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M"
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" # too big
fi
# to test the huge models, run: ./tests.sh huge
# this will run both the big and huge models
# huge models are > 32B parameters
if [ "$RUN_HUGE_TESTS" = true ]; then
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF:IQ1_S"
fi
# these models always give the wrong answer, not sure why