cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2
This commit is contained in:
Francis Couture-Harpin
2025-05-15 18:09:53 -04:00
parent a42f239418
commit f8c7caeeb7
4 changed files with 195 additions and 54 deletions

View File

@ -3191,7 +3191,18 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_COS: case GGML_OP_COS:
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
case GGML_OP_LOG: case GGML_OP_LOG:
case GGML_OP_SSM_SCAN: return true;
case GGML_OP_SSM_SCAN: {
if (op->src[3]->ne[0] == 1) {
// Mamba2
// (kernel only supports d_state == 128 && d_head % 16 == 0)
return op->src[0]->ne[0] == 128 && op->src[0]->ne[1] % 16 == 0;
} else {
// Mamba
// (kernel only supports d_state == 16, n_group == 1, d_head == 1)
return op->src[0]->ne[0] == 16 && op->src[4]->ne[1] == 1 && op->src[0]->ne[1] == 1;
}
}
case GGML_OP_SSM_CONV: case GGML_OP_SSM_CONV:
return true; return true;
case GGML_OP_CONT: case GGML_OP_CONT:

View File

@ -4,16 +4,15 @@ template <size_t splitD, size_t N>
__global__ void __launch_bounds__(splitD, 2) __global__ void __launch_bounds__(splitD, 2)
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5, const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2, const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, const int src2_nb1, const int src2_nb2, const int src3_nb1,
float * __restrict__ dst, const int64_t L) { const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
GGML_UNUSED(src1_nb0); const int64_t s_off, const int64_t d_inner, const int64_t L) {
GGML_UNUSED(src2_nb0);
constexpr int warp_size = ggml_cuda_get_physical_warp_size(); constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int bidx = blockIdx.x; // split along B const int bidx = blockIdx.x; // split along B (sequences)
const int bidy = blockIdx.y; // split along D const int bidy = blockIdx.y; // split along D (d_inner)
const int tid = threadIdx.x; const int tid = threadIdx.x;
const int wid = tid / 32; const int wid = tid / 32;
const int wtid = tid % 32; const int wtid = tid % 32;
@ -24,23 +23,23 @@ __global__ void __launch_bounds__(splitD, 2)
float * smem_A = smem; float * smem_A = smem;
float * smem_s0 = smem_A + splitD * stride_sA; float * smem_s0 = smem_A + splitD * stride_sA;
const float * s0_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1); const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2);
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1); const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb2)); const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3));
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb2)); const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3));
float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float));
float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1); float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2);
const int stride_s0 = src0_nb1 / sizeof(float); const int stride_s0 = src0_nb2 / sizeof(float);
const int stride_x = src1_nb1 / sizeof(float); const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float); const int stride_dt = src2_nb1 / sizeof(float);
const int stride_A = src3_nb1 / sizeof(float); const int stride_A = src3_nb1 / sizeof(float);
const int stride_B = src4_nb1 / sizeof(float); const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb1 / sizeof(float); const int stride_C = src5_nb2 / sizeof(float);
const int stride_s = stride_s0; const int stride_s = stride_s0;
const int stride_y = stride_x; const int stride_y = d_inner;
// can N not be 16? for example 32? // can N not be 16? for example 32?
if (N == 16) { if (N == 16) {
@ -84,24 +83,157 @@ __global__ void __launch_bounds__(splitD, 2)
} }
} }
// assumes as many threads as d_state
template <int splitH, int d_state>
__global__ void __launch_bounds__(d_state, 1)
ssm_scan_f32_group(
const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
const int32_t * __restrict__ src6, float * __restrict__ dst,
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
const int src2_nb1, const int src2_nb2, const int src3_nb1,
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
const int64_t s_off, const int64_t n_head, const int64_t d_head, const int64_t n_group, const int64_t n_tok) {
const int head_idx = (blockIdx.x * splitH) / d_head;
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
const int seq_idx = blockIdx.y;
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
const float * dt_block = (const float *) ((const char *) src2 + (seq_idx * src2_nb2) + head_idx * sizeof(float));
const float * A_block = (const float *) ((const char *) src3 + head_idx * src3_nb1);
const float * B_block = (const float *) ((const char *) src4 + (seq_idx * src4_nb3) + (group_off));
const float * C_block = (const float *) ((const char *) src5 + (seq_idx * src5_nb3) + (group_off));
float * y_block = dst + (seq_idx * n_tok * n_head * d_head) + blockIdx.x * splitH;
float * s_block = (float *) ((char *) dst + s_off + seq_idx * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
// strides across n_seq_tokens
const int stride_x = src1_nb2 / sizeof(float);
const int stride_dt = src2_nb1 / sizeof(float);
const int stride_B = src4_nb2 / sizeof(float);
const int stride_C = src5_nb2 / sizeof(float);
const int stride_y = n_head * d_head;
float state[splitH];
// for the parallel accumulation
__shared__ float stateC[splitH * d_state];
#pragma unroll
for (int j = 0; j < splitH; j++) {
state[j] = s0_block[j * d_state + threadIdx.x];
}
for (int64_t i = 0; i < n_tok; i++) {
// TODO: only calculate dA and dt_soft_plus once per head instead of every splitH head elements
// TODO: only calculate B and C once per head group
// NOTE: dt_soft_plus, dA and x_dt have the same value across threads here.
float dt_soft_plus = dt_block[i * stride_dt];
if (dt_soft_plus <= 20.0f) {
dt_soft_plus = log1pf(expf(dt_soft_plus));
}
const float dA = expf(dt_soft_plus * A_block[0]);
const float B = B_block[i * stride_B + threadIdx.x];
const float C = C_block[i * stride_C + threadIdx.x];
// across d_head
#pragma unroll
for (int j = 0; j < splitH; j++) {
const float x_dt = x_block[i * stride_x + j] * dt_soft_plus;
state[j] = (state[j] * dA) + (B * x_dt);
stateC[j * d_state + threadIdx.x] = state[j] * C;
}
__syncthreads();
// parallel accumulation for stateC
// TODO: simplify
{
static_assert((d_state & -d_state) == d_state, "the state size has to be a power of 2");
static_assert((splitH & -splitH) == splitH, "splitH has to be a power of 2");
// reduce until w matches the warp size
// TODO: does this work even when the physical warp size is 64?
#pragma unroll
for (int w = d_state; w > WARP_SIZE; w >>= 1) {
// (assuming there are d_state threads)
#pragma unroll
for (int j = 0; j < ((w >> 1) * splitH + d_state - 1) / d_state; j++) {
// TODO: check for bank conflicts
const int k = (threadIdx.x % (w >> 1)) + (d_state * (threadIdx.x / (w >> 1))) + j * d_state * (d_state / (w >> 1));
stateC[k] += stateC[k + (w >> 1)];
}
__syncthreads();
}
static_assert(splitH >= d_state / WARP_SIZE);
#pragma unroll
for (int j = 0; j < splitH / (d_state / WARP_SIZE); j++) {
float y = stateC[(threadIdx.x % WARP_SIZE) + d_state * (threadIdx.x / WARP_SIZE) + j * d_state * (d_state / WARP_SIZE)];
y = warp_reduce_sum(y);
// store the above accumulations
if (threadIdx.x % WARP_SIZE == 0) {
const int k = threadIdx.x / WARP_SIZE + j * (d_state / WARP_SIZE);
y_block[i * stride_y + k] = y;
}
}
}
}
// write back the state
#pragma unroll
for (int j = 0; j < splitH; j++) {
s_block[j * d_state + threadIdx.x] = state[j];
}
}
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3, static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
const float * src4, const float * src5, const int src0_nb1, const int src0_nb2, const float * src4, const float * src5, const int32_t * src6, float * dst,
const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3, const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3, const int src2_nb1,
const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, const int src2_nb2, const int src3_nb1, const int src4_nb2, const int src4_nb3, const int src5_nb2,
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
float * dst, const int64_t N, const int64_t D, const int64_t L, const int64_t B, const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
cudaStream_t stream) { cudaStream_t stream) {
const int threads = 128; const int threads = 128;
// todo: consider D cannot be divided,does this situation exist? // NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
GGML_ASSERT(D % threads == 0); if (src3_nb1 == sizeof(float)) {
const dim3 blocks(B, (D + threads - 1) / threads, 1); // Mamba2
const int smem_size = (threads * (N + 1) * 2) * sizeof(float); if (d_state == 128) {
if (N == 16) { GGML_ASSERT(d_state % threads == 0);
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>( // NOTE: can be any power of two between 4 and 64
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0, const int splitH = 16;
src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, L); GGML_ASSERT(head_dim % splitH == 0);
const dim3 blocks((n_head * head_dim + (splitH - 1)) / splitH, n_seq, 1);
ssm_scan_f32_group<16, 128><<<blocks, threads, 0, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2, src3_nb1,
src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, head_dim, n_group, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=128.");
}
} else { } else {
GGML_ABORT("doesn't support N!=16."); // Mamba1
// todo: consider n_head cannot be divided, does this situation exist?
GGML_ASSERT(n_head % threads == 0);
GGML_ASSERT(head_dim == 1);
GGML_ASSERT(n_group == 1);
const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1);
const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float);
if (d_state == 16) {
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
src0, src1, src2, src3, src4, src5, src6, dst,
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
} else {
GGML_ABORT("doesn't support d_state!=16.");
}
} }
} }
@ -112,30 +244,25 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const struct ggml_tensor * src3 = dst->src[3]; // A const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C const struct ggml_tensor * src5 = dst->src[5]; // C
const struct ggml_tensor * src6 = dst->src[6]; // ids
// const int64_t d_state = src0->ne[0];
// const int64_t d_inner = src0->ne[1];
// const int64_t l = src1->ne[1];
// const int64_t b = src0->ne[2];
const int64_t nc = src0->ne[0]; // d_state const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner const int64_t nr = src0->ne[1]; // head_dim or 1
const int64_t n_t = src1->ne[1]; // number of tokens per sequence const int64_t nh = src1->ne[1]; // n_head
const int64_t n_s = src0->ne[2]; // number of sequences in the batch const int64_t ng = src4->ne[1]; // n_group
const int64_t n_t = src1->ne[2]; // number of tokens per sequence
const int64_t n_s = src1->ne[3]; // number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst)); const int64_t s_off = ggml_nelements(src1) * sizeof(float);
GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*n_s == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float)); GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float)); GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float)); GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float)); GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[3])
GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
const float * src0_d = (const float *) src0->data; const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data; const float * src1_d = (const float *) src1->data;
@ -143,13 +270,16 @@ void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * src3_d = (const float *) src3->data; const float * src3_d = (const float *) src3->data;
const float * src4_d = (const float *) src4->data; const float * src4_d = (const float *) src4->data;
const float * src5_d = (const float *) src5->data; const float * src5_d = (const float *) src5->data;
const int32_t * src6_d = (const int32_t *) src6->data;
float * dst_d = (float *) dst->data; float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src6->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32);
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0], ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src6_d, dst_d,
src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1], src0->nb[2], src0->nb[3], src1->nb[2], src1->nb[3], src2->nb[1], src2->nb[2],
src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream); src3->nb[1], src4->nb[2], src4->nb[3], src5->nb[2], src5->nb[3],
s_off, nc, nr, nh, ng, n_t, n_s, stream);
} }

View File

@ -215,7 +215,7 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0]; const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
const int64_t n_head = w->ne[1]; const int64_t n_head = w->ne[1];
const int64_t head_dim = hparams.ssm_d_inner / n_head; const int64_t head_dim = hparams.ssm_d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group; const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
const int64_t n_seq_tokens = 512; const int64_t n_seq_tokens = 512;
const int64_t n_seqs = 3; const int64_t n_seqs = 3;
ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs); ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);

View File

@ -4225,7 +4225,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1})); test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1 test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 32, 32, 2, 32, 4)); // Mamba-2 test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1)); test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1)); test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));