context : simplify output counting logic during decode (#14142)

* batch : remove logits_all flag

ggml-ci

* context : simplify output counting logic during decode

ggml-ci

* cont : fix comments
This commit is contained in:
Georgi Gerganov
2025-06-12 11:50:01 +03:00
committed by GitHub
parent c3ee46fab4
commit f6e1a7aa87
3 changed files with 28 additions and 23 deletions

View File

@ -306,9 +306,10 @@ llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0
batch.seq_id = seq_id.data();
}
if (!batch.logits) {
logits.resize(batch.n_tokens);
logits[logits.size() - 1] = true;
batch.logits = logits.data();
// by default return the output only for the last token
output.resize(batch.n_tokens);
output[output.size() - 1] = true;
batch.logits = output.data();
}
}

View File

@ -85,7 +85,7 @@ struct llama_batch_allocr {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<int8_t> logits;
std::vector<int8_t> output;
// optionally fulfill the batch returned by llama_batch_get_one
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);

View File

@ -758,6 +758,7 @@ int llama_context::encode(llama_batch & inp_batch) {
t_compute_start_us = ggml_time_us();
}
// TODO: this clear of the buffer can easily be forgotten - need something better
embd_seq.clear();
n_queued_tokens += n_tokens;
@ -940,6 +941,25 @@ int llama_context::decode(llama_batch & inp_batch) {
}
}
// this indicates we are doing pooled embedding
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
int64_t n_outputs_all = 0;
// count outputs
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
if (embd_pooled) {
// require that all tokens are output
if (n_outputs_all != n_tokens_all) {
LLAMA_LOG_ERROR("%s: pooled embedding requires that all tokens are output (n_outputs_all = %" PRId64 ", n_tokens_all = %" PRId64 ")\n",
__func__, n_outputs_all, n_tokens_all);
return -1;
}
}
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
@ -949,25 +969,9 @@ int llama_context::decode(llama_batch & inp_batch) {
}
n_queued_tokens += n_tokens_all;
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
// TODO: this clear of the buffer can easily be forgotten - need something better
embd_seq.clear();
int64_t n_outputs_all = 0;
// count outputs
if (batch.logits && !embd_pooled) {
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
} else if (embd_pooled) {
n_outputs_all = n_tokens_all;
} else {
// keep last output only
n_outputs_all = 1;
}
bool did_optimize = false;
// handle any pending defrags/shifts
@ -1029,7 +1033,7 @@ int llama_context::decode(llama_batch & inp_batch) {
do {
const auto & ubatch = mstate->get_ubatch();
// count the outputs in this u_batch
// count the outputs in this ubatch
{
int32_t n_outputs_new = 0;
@ -2073,7 +2077,7 @@ void llama_context::opt_epoch_iter(
n_queued_tokens += n_tokens_all;
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
// this indicates we are doing pooled embedding
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
embd_seq.clear();