context : fix index overflow on huge outputs (#15080)

* context : fix overflow when re-ordering huge outputs

* context : fix logits size overflow for huge batches
This commit is contained in:
compilade
2025-08-05 05:27:45 -04:00
committed by GitHub
parent ec428b02c3
commit ee3a9fcf88

View File

@@ -786,7 +786,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
const int32_t n_vocab = model.vocab.n_tokens();
const int64_t n_vocab = model.vocab.n_tokens();
// note: during encode, we always pass the full sequence starting from pos = 0
if (!balloc->init(batch_inp, model.vocab, nullptr, n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
@@ -959,7 +959,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const auto & vocab = model.vocab;
const auto & hparams = model.hparams;
const int32_t n_vocab = vocab.n_tokens();
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
// when computing embeddings, all tokens are output
@@ -1328,21 +1328,21 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
}
void llama_context::output_reorder() {
const uint32_t n_vocab = model.vocab.n_tokens();
const uint64_t n_vocab = model.vocab.n_tokens();
const uint64_t n_embd = model.hparams.n_embd;
for (uint32_t s = 0; s < output_swaps.size(); ++s) {
const uint32_t i0 = output_swaps[s].i0;
const uint32_t i1 = output_swaps[s].i1;
for (size_t s = 0; s < output_swaps.size(); ++s) {
const uint64_t i0 = output_swaps[s].i0;
const uint64_t i1 = output_swaps[s].i1;
if (logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
for (uint64_t k = 0; k < n_vocab; k++) {
std::swap(logits[i0*n_vocab + k], logits[i1*n_vocab + k]);
}
}
if (embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
for (uint64_t k = 0; k < n_embd; k++) {
std::swap(embd[i0*n_embd + k], embd[i1*n_embd + k]);
}
}