context : introduce llama_graph_i

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-12 13:48:52 +02:00
parent 5eae8e5183
commit e633dc171a
4 changed files with 168 additions and 132 deletions

View File

@ -15,6 +15,7 @@ add_library(llama
llama-chat.cpp
llama-context.cpp
llama-grammar.cpp
llama-graph.cpp
llama-hparams.cpp
llama-impl.cpp
llama-kv-cache.cpp

View File

@ -3,6 +3,7 @@
#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-graph.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-adapter.h"
@ -16,7 +17,7 @@
using llama_loras = std::unordered_map<struct llama_adapter_lora *, float>;
struct llama_context {
struct llama_context : public llama_graph_i {
llama_context(const llama_model & model);
virtual ~llama_context();
@ -129,137 +130,6 @@ struct llama_context {
virtual ggml_tensor * build_rope_factors(int il);
// graph build API (context-specific)
virtual ggml_tensor * build_inp_embd(
ggml_context * ctx0,
ggml_tensor * tok_embd,
const llama_ubatch & ubatch) = 0;
virtual ggml_tensor * build_inp_pos(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_out_ids(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_mean(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_cls(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual void build_attn_inp(
ggml_context * ctx0,
int32_t n_tokens,
bool causal,
bool swa,
bool worst_case) = 0;
virtual void build_attn_kv_store(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
int32_t n_tokens,
int64_t il,
bool worst_case) = 0;
virtual ggml_tensor * build_attn_qkv(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
int32_t n_tokens,
float kq_scale,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_soft_max_ext(
ggml_context * ctx0,
ggml_tensor * kq,
float kq_scale) = 0;
virtual void build_k_shift(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
virtual void build_defrag(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
virtual ggml_tensor * build_inp_embd_enc(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_KQ_mask_cross(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_copy(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_mask(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_copy_mask_state(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_tokens,
int32_t n_state,
int32_t n_seqs,
bool worst_case) = 0;
virtual ggml_tensor * build_mamba_layer(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_load(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_store(
ggml_context * ctx0,
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv6_time_mix(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
// state save/load
virtual size_t state_get_size() = 0;

1
src/llama-graph.cpp Normal file
View File

@ -0,0 +1 @@
#include "llama-graph.h"

164
src/llama-graph.h Normal file
View File

@ -0,0 +1,164 @@
#pragma once
#include <cstdint>
struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;
struct llama_ubatch;
// TODO: pass to llama_model graph build
class llama_graph_i {
public:
// apply control vector for layer il
virtual ggml_tensor * build_cvec(
ggml_context * ctx0,
ggml_tensor * cur,
int il) = 0;
// do mat_mul, while optionally apply lora
virtual ggml_tensor * build_lora_mm(
ggml_context * ctx0,
ggml_tensor * w,
ggml_tensor * cur) = 0;
// do mat_mul_id, while optionally apply lora
virtual ggml_tensor * build_lora_mm_id(
ggml_context * ctx0,
ggml_tensor * w, // struct ggml_tensor * as
ggml_tensor * cur, // struct ggml_tensor * b
ggml_tensor * ids) = 0;
virtual ggml_tensor * build_rope_factors(int il) = 0;
// graph build API (context-specific)
virtual ggml_tensor * build_inp_embd(
ggml_context * ctx0,
ggml_tensor * tok_embd,
const llama_ubatch & ubatch) = 0;
virtual ggml_tensor * build_inp_pos(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_out_ids(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_mean(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_cls(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual void build_attn_inp(
ggml_context * ctx0,
int32_t n_tokens,
bool causal,
bool swa,
bool worst_case) = 0;
virtual void build_attn_kv_store(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
int32_t n_tokens,
int64_t il,
bool worst_case) = 0;
virtual ggml_tensor * build_attn_qkv(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
int32_t n_tokens,
float kq_scale,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_soft_max_ext(
ggml_context * ctx0,
ggml_tensor * kq,
float kq_scale) = 0;
virtual void build_k_shift(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
virtual void build_defrag(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
virtual ggml_tensor * build_inp_embd_enc(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_KQ_mask_cross(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_copy(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_mask(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_copy_mask_state(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_tokens,
int32_t n_state,
int32_t n_seqs,
bool worst_case) = 0;
virtual ggml_tensor * build_mamba_layer(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_load(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_store(
ggml_context * ctx0,
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv6_time_mix(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
};