fix: Update recurrent cache for changes to remove intermediate kv_cache interface

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart
2025-06-05 14:07:07 -06:00
parent a9b5fe98ad
commit d3699366e6
2 changed files with 99 additions and 92 deletions

View File

@ -49,6 +49,59 @@ llama_kv_cache_hybrid_recurrent::llama_kv_cache_hybrid_recurrent(
n_seq_max
)) {}
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
// since this includes a recurrent cache, we cannot use split_simple
auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all);
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
llama_ubatch ubatch;
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = sbatch.split_seq(n_ubatch);
} else {
ubatch = sbatch.split_equal(n_ubatch);
}
ubatches.push_back(ubatch);
}
// prepare the recurrent batches first
if (!kv_recurrent->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined state at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache
auto heads_attn = kv_attn->prepare(ubatches);
if (heads_attn.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
}
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_full() {
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(this);
}
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_update(llama_context * lctx, bool optimize) {
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
this,
static_cast<llama_kv_cache_unified_state *>( kv_attn ->init_update(lctx, optimize).release()),
static_cast<llama_kv_cache_recurrent_state *>(kv_recurrent->init_update(lctx, optimize).release()));
}
bool llama_kv_cache_hybrid_recurrent::get_can_shift() const {
// Shifting is trivially supported for recurrent
return kv_attn->get_can_shift();
}
void llama_kv_cache_hybrid_recurrent::clear() {
kv_attn ->clear();
kv_recurrent->clear();
@ -93,67 +146,6 @@ llama_pos llama_kv_cache_hybrid_recurrent::seq_pos_max(llama_seq_id seq_id) cons
return std::min(kv_attn->seq_pos_max(seq_id), kv_recurrent->seq_pos_max(seq_id));
}
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
// since this includes a recurrent cache, we cannot use split_simple
auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all);
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
llama_ubatch ubatch;
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = sbatch.split_seq(n_ubatch);
} else {
ubatch = sbatch.split_equal(n_ubatch);
}
ubatches.push_back(ubatch);
}
// prepare the recurrent batches first
if (!kv_recurrent->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined state at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache
auto heads_attn = kv_attn->prepare(ubatches);
if (heads_attn.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
}
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_full() {
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(this);
}
bool llama_kv_cache_hybrid_recurrent::update(llama_context & lctx) {
bool res = false;
res = res | kv_attn ->update(lctx);
res = res | kv_recurrent->update(lctx);
return res;
}
void llama_kv_cache_hybrid_recurrent::defrag_sched(float thold) {
kv_attn ->defrag_sched(thold);
kv_recurrent->defrag_sched(thold);
}
bool llama_kv_cache_hybrid_recurrent::get_can_shift() const {
// Shifting is trivially supported for recurrent
return kv_attn->get_can_shift();
}
void llama_kv_cache_hybrid_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
kv_attn ->state_write(io, seq_id);
kv_recurrent->state_write(io, seq_id);
@ -173,13 +165,24 @@ llama_kv_cache_recurrent * llama_kv_cache_hybrid_recurrent::get_kv_recurrent() c
}
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_memory_status status)
: status(status), state_attn(status), state_recurrent(status) {}
: status(status),
state_attn(new llama_kv_cache_unified_state(status)),
state_recurrent(new llama_kv_cache_recurrent_state(status)) {}
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_kv_cache_hybrid_recurrent * kv)
: status(LLAMA_MEMORY_STATUS_SUCCESS),
kv(kv),
state_attn(status, kv->get_kv_attn()),
state_recurrent(status, kv->get_kv_recurrent()) {}
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
state_recurrent(new llama_kv_cache_recurrent_state(status, kv->get_kv_recurrent())) {}
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
llama_kv_cache_hybrid_recurrent * kv,
llama_kv_cache_unified_state * state_unified,
llama_kv_cache_recurrent_state * state_recurrent)
: status(LLAMA_MEMORY_STATUS_SUCCESS),
kv(kv),
state_attn(state_unified),
state_recurrent(state_recurrent) {}
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
llama_kv_cache_hybrid_recurrent * kv,
@ -194,8 +197,8 @@ llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
// NOTE: these child states are only used as wrapper APIs for the
// const methods, so we use the "init full" signature since the
// actual state is not used.
state_attn(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_attn()),
state_recurrent(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_recurrent()) {}
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
state_recurrent(new llama_kv_cache_recurrent_state(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_recurrent())) {}
bool llama_kv_cache_hybrid_recurrent_state::next() {
@ -232,10 +235,10 @@ const llama_ubatch & llama_kv_cache_hybrid_recurrent_state::get_ubatch() const {
return ubatches[i_next];
}
const llama_kv_cache_unified_state * llama_kv_cache_hybrid_recurrent_state::get_state_attn () const {
return &state_attn;
const llama_kv_cache_unified_state * llama_kv_cache_hybrid_recurrent_state::get_state_attn() const {
return state_attn.get();
}
const llama_kv_cache_recurrent_state * llama_kv_cache_hybrid_recurrent_state::get_state_recurrent() const {
return &state_recurrent;
return state_recurrent.get();
}

View File

@ -2,9 +2,10 @@
#include "llama-batch.h"
#include "llama-graph.h"
#include "llama-kv-cache.h"
#include "llama-kv-cache-recurrent.h"
#include "llama-kv-cache-unified.h"
#include "llama-kv-cells.h"
#include "llama-memory.h"
#include <memory>
#include <vector>
@ -16,7 +17,7 @@
// utilizes instances of llama_kv_cache_recurrent and llama_kv_cache_unified to
// support models where each layer may be either attention-based or recurrent
class llama_kv_cache_hybrid_recurrent : public llama_kv_cache {
class llama_kv_cache_hybrid_recurrent : public llama_memory_i {
public:
llama_kv_cache_hybrid_recurrent(
const llama_model & model,
@ -42,6 +43,18 @@ public:
// llama_memory_i
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
uint32_t n_ubatch,
bool embd_pooled,
bool logits_all) override;
llama_memory_state_ptr init_full() override;
llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override;
bool get_can_shift() const override;
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
@ -53,24 +66,6 @@ public:
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
uint32_t n_ubatch,
bool embd_pooled,
bool logits_all) override;
llama_memory_state_ptr init_full() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
bool get_can_shift() const override;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
@ -92,12 +87,21 @@ private:
class llama_kv_cache_hybrid_recurrent_state : public llama_memory_state_i {
public:
using llama_kv_cache_unified_state_ptr = std::unique_ptr<llama_kv_cache_unified_state>;
using llama_kv_cache_recurrent_state_ptr = std::unique_ptr<llama_kv_cache_recurrent_state>;
// init failure
explicit llama_kv_cache_hybrid_recurrent_state(llama_memory_status status);
// init full
explicit llama_kv_cache_hybrid_recurrent_state(llama_kv_cache_hybrid_recurrent * kv);
// init update
explicit llama_kv_cache_hybrid_recurrent_state(
llama_kv_cache_hybrid_recurrent * kv,
llama_kv_cache_unified_state * state_unified,
llama_kv_cache_recurrent_state * state_recurrent);
// init success
llama_kv_cache_hybrid_recurrent_state(
llama_kv_cache_hybrid_recurrent * kv,
@ -116,7 +120,7 @@ public:
const llama_ubatch & get_ubatch() const override;
//
// llama_kv_cache_hybrid_recurrent_state_i
// llama_kv_cache_hybrid_recurrent_state
//
const llama_kv_cache_unified_state * get_state_attn () const;
@ -135,6 +139,6 @@ private:
std::vector<uint32_t> heads_attn;
std::vector<llama_ubatch> ubatches;
const llama_kv_cache_unified_state state_attn;
const llama_kv_cache_recurrent_state state_recurrent;
const llama_kv_cache_unified_state_ptr state_attn;
const llama_kv_cache_recurrent_state_ptr state_recurrent;
};