mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-29 12:35:16 +00:00
fix: Update recurrent cache for changes to remove intermediate kv_cache interface
Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
@ -49,6 +49,59 @@ llama_kv_cache_hybrid_recurrent::llama_kv_cache_hybrid_recurrent(
|
||||
n_seq_max
|
||||
)) {}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
|
||||
|
||||
// since this includes a recurrent cache, we cannot use split_simple
|
||||
auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all);
|
||||
|
||||
// follow the recurrent pattern for creating the ubatch splits
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch;
|
||||
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = sbatch.split_seq(n_ubatch);
|
||||
} else {
|
||||
ubatch = sbatch.split_equal(n_ubatch);
|
||||
}
|
||||
|
||||
ubatches.push_back(ubatch);
|
||||
}
|
||||
|
||||
// prepare the recurrent batches first
|
||||
if (!kv_recurrent->prepare(ubatches)) {
|
||||
// TODO: will the recurrent cache be in an undefined state at this point?
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
// prepare the attention cache
|
||||
auto heads_attn = kv_attn->prepare(ubatches);
|
||||
if (heads_attn.empty()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
|
||||
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_full() {
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(this);
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_update(llama_context * lctx, bool optimize) {
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
|
||||
this,
|
||||
static_cast<llama_kv_cache_unified_state *>( kv_attn ->init_update(lctx, optimize).release()),
|
||||
static_cast<llama_kv_cache_recurrent_state *>(kv_recurrent->init_update(lctx, optimize).release()));
|
||||
}
|
||||
|
||||
bool llama_kv_cache_hybrid_recurrent::get_can_shift() const {
|
||||
// Shifting is trivially supported for recurrent
|
||||
return kv_attn->get_can_shift();
|
||||
}
|
||||
void llama_kv_cache_hybrid_recurrent::clear() {
|
||||
kv_attn ->clear();
|
||||
kv_recurrent->clear();
|
||||
@ -93,67 +146,6 @@ llama_pos llama_kv_cache_hybrid_recurrent::seq_pos_max(llama_seq_id seq_id) cons
|
||||
return std::min(kv_attn->seq_pos_max(seq_id), kv_recurrent->seq_pos_max(seq_id));
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
|
||||
|
||||
// since this includes a recurrent cache, we cannot use split_simple
|
||||
auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all);
|
||||
|
||||
// follow the recurrent pattern for creating the ubatch splits
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch;
|
||||
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = sbatch.split_seq(n_ubatch);
|
||||
} else {
|
||||
ubatch = sbatch.split_equal(n_ubatch);
|
||||
}
|
||||
|
||||
ubatches.push_back(ubatch);
|
||||
}
|
||||
|
||||
// prepare the recurrent batches first
|
||||
if (!kv_recurrent->prepare(ubatches)) {
|
||||
// TODO: will the recurrent cache be in an undefined state at this point?
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
// prepare the attention cache
|
||||
auto heads_attn = kv_attn->prepare(ubatches);
|
||||
if (heads_attn.empty()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
|
||||
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_full() {
|
||||
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(this);
|
||||
}
|
||||
|
||||
bool llama_kv_cache_hybrid_recurrent::update(llama_context & lctx) {
|
||||
bool res = false;
|
||||
|
||||
res = res | kv_attn ->update(lctx);
|
||||
res = res | kv_recurrent->update(lctx);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void llama_kv_cache_hybrid_recurrent::defrag_sched(float thold) {
|
||||
kv_attn ->defrag_sched(thold);
|
||||
kv_recurrent->defrag_sched(thold);
|
||||
}
|
||||
|
||||
bool llama_kv_cache_hybrid_recurrent::get_can_shift() const {
|
||||
// Shifting is trivially supported for recurrent
|
||||
return kv_attn->get_can_shift();
|
||||
}
|
||||
|
||||
void llama_kv_cache_hybrid_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
||||
kv_attn ->state_write(io, seq_id);
|
||||
kv_recurrent->state_write(io, seq_id);
|
||||
@ -173,13 +165,24 @@ llama_kv_cache_recurrent * llama_kv_cache_hybrid_recurrent::get_kv_recurrent() c
|
||||
}
|
||||
|
||||
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_memory_status status)
|
||||
: status(status), state_attn(status), state_recurrent(status) {}
|
||||
: status(status),
|
||||
state_attn(new llama_kv_cache_unified_state(status)),
|
||||
state_recurrent(new llama_kv_cache_recurrent_state(status)) {}
|
||||
|
||||
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_kv_cache_hybrid_recurrent * kv)
|
||||
: status(LLAMA_MEMORY_STATUS_SUCCESS),
|
||||
kv(kv),
|
||||
state_attn(status, kv->get_kv_attn()),
|
||||
state_recurrent(status, kv->get_kv_recurrent()) {}
|
||||
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
|
||||
state_recurrent(new llama_kv_cache_recurrent_state(status, kv->get_kv_recurrent())) {}
|
||||
|
||||
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
|
||||
llama_kv_cache_hybrid_recurrent * kv,
|
||||
llama_kv_cache_unified_state * state_unified,
|
||||
llama_kv_cache_recurrent_state * state_recurrent)
|
||||
: status(LLAMA_MEMORY_STATUS_SUCCESS),
|
||||
kv(kv),
|
||||
state_attn(state_unified),
|
||||
state_recurrent(state_recurrent) {}
|
||||
|
||||
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
|
||||
llama_kv_cache_hybrid_recurrent * kv,
|
||||
@ -194,8 +197,8 @@ llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
|
||||
// NOTE: these child states are only used as wrapper APIs for the
|
||||
// const methods, so we use the "init full" signature since the
|
||||
// actual state is not used.
|
||||
state_attn(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_attn()),
|
||||
state_recurrent(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_recurrent()) {}
|
||||
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
|
||||
state_recurrent(new llama_kv_cache_recurrent_state(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_recurrent())) {}
|
||||
|
||||
|
||||
bool llama_kv_cache_hybrid_recurrent_state::next() {
|
||||
@ -232,10 +235,10 @@ const llama_ubatch & llama_kv_cache_hybrid_recurrent_state::get_ubatch() const {
|
||||
return ubatches[i_next];
|
||||
}
|
||||
|
||||
const llama_kv_cache_unified_state * llama_kv_cache_hybrid_recurrent_state::get_state_attn () const {
|
||||
return &state_attn;
|
||||
const llama_kv_cache_unified_state * llama_kv_cache_hybrid_recurrent_state::get_state_attn() const {
|
||||
return state_attn.get();
|
||||
}
|
||||
|
||||
const llama_kv_cache_recurrent_state * llama_kv_cache_hybrid_recurrent_state::get_state_recurrent() const {
|
||||
return &state_recurrent;
|
||||
return state_recurrent.get();
|
||||
}
|
||||
|
@ -2,9 +2,10 @@
|
||||
|
||||
#include "llama-batch.h"
|
||||
#include "llama-graph.h"
|
||||
#include "llama-kv-cache.h"
|
||||
#include "llama-kv-cache-recurrent.h"
|
||||
#include "llama-kv-cache-unified.h"
|
||||
#include "llama-kv-cells.h"
|
||||
#include "llama-memory.h"
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
@ -16,7 +17,7 @@
|
||||
// utilizes instances of llama_kv_cache_recurrent and llama_kv_cache_unified to
|
||||
// support models where each layer may be either attention-based or recurrent
|
||||
|
||||
class llama_kv_cache_hybrid_recurrent : public llama_kv_cache {
|
||||
class llama_kv_cache_hybrid_recurrent : public llama_memory_i {
|
||||
public:
|
||||
llama_kv_cache_hybrid_recurrent(
|
||||
const llama_model & model,
|
||||
@ -42,6 +43,18 @@ public:
|
||||
// llama_memory_i
|
||||
//
|
||||
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) override;
|
||||
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
void clear() override;
|
||||
|
||||
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||
@ -53,24 +66,6 @@ public:
|
||||
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) override;
|
||||
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
bool update(llama_context & lctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||
@ -92,12 +87,21 @@ private:
|
||||
|
||||
class llama_kv_cache_hybrid_recurrent_state : public llama_memory_state_i {
|
||||
public:
|
||||
using llama_kv_cache_unified_state_ptr = std::unique_ptr<llama_kv_cache_unified_state>;
|
||||
using llama_kv_cache_recurrent_state_ptr = std::unique_ptr<llama_kv_cache_recurrent_state>;
|
||||
|
||||
// init failure
|
||||
explicit llama_kv_cache_hybrid_recurrent_state(llama_memory_status status);
|
||||
|
||||
// init full
|
||||
explicit llama_kv_cache_hybrid_recurrent_state(llama_kv_cache_hybrid_recurrent * kv);
|
||||
|
||||
// init update
|
||||
explicit llama_kv_cache_hybrid_recurrent_state(
|
||||
llama_kv_cache_hybrid_recurrent * kv,
|
||||
llama_kv_cache_unified_state * state_unified,
|
||||
llama_kv_cache_recurrent_state * state_recurrent);
|
||||
|
||||
// init success
|
||||
llama_kv_cache_hybrid_recurrent_state(
|
||||
llama_kv_cache_hybrid_recurrent * kv,
|
||||
@ -116,7 +120,7 @@ public:
|
||||
const llama_ubatch & get_ubatch() const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache_hybrid_recurrent_state_i
|
||||
// llama_kv_cache_hybrid_recurrent_state
|
||||
//
|
||||
|
||||
const llama_kv_cache_unified_state * get_state_attn () const;
|
||||
@ -135,6 +139,6 @@ private:
|
||||
std::vector<uint32_t> heads_attn;
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
|
||||
const llama_kv_cache_unified_state state_attn;
|
||||
const llama_kv_cache_recurrent_state state_recurrent;
|
||||
const llama_kv_cache_unified_state_ptr state_attn;
|
||||
const llama_kv_cache_recurrent_state_ptr state_recurrent;
|
||||
};
|
||||
|
Reference in New Issue
Block a user