context : improve llama_context encapsulation

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-12 12:11:30 +02:00
parent b52b79b048
commit 8da7f612b7
5 changed files with 328 additions and 158 deletions

View File

@ -20,19 +20,23 @@ struct llama_context {
llama_context(const llama_model & model);
virtual ~llama_context();
virtual void synchronize();
const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
virtual uint32_t n_ctx() const = 0;
virtual uint32_t n_batch() const = 0;
virtual uint32_t n_ubatch() const = 0;
virtual uint32_t n_ctx() const;
virtual uint32_t n_batch() const;
virtual uint32_t n_ubatch() const;
virtual uint32_t n_seq_max() const = 0;
virtual uint32_t n_threads() const;
virtual uint32_t n_threads_batch() const;
virtual llama_kv_cache * get_kv_self() = 0;
virtual const llama_kv_cache * get_kv_self() const = 0;
virtual void kv_self_update() = 0;
virtual enum llama_pooling_type pooling_type() const = 0;
virtual enum llama_pooling_type pooling_type() const;
virtual float * get_logits() = 0;
virtual float * get_logits_ith(int32_t i) = 0;
@ -41,10 +45,41 @@ struct llama_context {
virtual float * get_embeddings_ith(int32_t i) = 0;
virtual float * get_embeddings_seq(llama_seq_id seq_id) = 0;
int64_t n_pos_per_token() const; // vision
virtual int64_t n_pos_per_token() const; // vision
virtual ggml_context_ptr init();
virtual void synchronize();
virtual void attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
virtual void detach_threadpool();
virtual void set_n_threads(int32_t n_threads, int32_t n_threads_batch);
virtual void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);
virtual void set_embeddings (bool value);
virtual void set_causal_attn(bool value);
virtual void set_adapter_lora(
struct llama_adapter_lora * adapter,
float scale);
virtual bool rm_adapter_lora(
struct llama_adapter_lora * adapter);
virtual void clear_adapter_lora();
virtual bool apply_adapter_cvec(
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
// decode a batch of tokens by evaluating the transformer
// in case of unsuccessful decoding (error or warning),
// the kv_cache state will be returned to its original state
@ -73,6 +108,12 @@ struct llama_context {
// graph build API (generic)
// apply control vector for layer il
virtual ggml_tensor * build_cvec(
ggml_context * ctx0,
ggml_tensor * cur,
int il);
// do mat_mul, while optionally apply lora
virtual ggml_tensor * build_lora_mm(
ggml_context * ctx0,
@ -221,11 +262,11 @@ struct llama_context {
// state save/load
virtual size_t state_get_size() = 0;
virtual size_t state_get_size() = 0;
virtual size_t state_get_data( uint8_t * dst, size_t size) = 0;
virtual size_t state_set_data(const uint8_t * src, size_t size) = 0;
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) = 0;
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) = 0;
@ -253,8 +294,19 @@ struct llama_context {
const llama_token * tokens,
size_t n_token_count) = 0;
// perf
virtual llama_perf_context_data get_perf() const;
virtual void perf_reset();
// members
// TODO: temporary public until llama_context implements the graph build function
std::vector<ggml_backend_ptr> backends;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_sched_ptr sched;
protected:
const llama_model & model;
llama_cparams cparams;
@ -267,17 +319,11 @@ struct llama_context {
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_sched_ptr sched;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
// perf
bool has_evaluated_once = false;
mutable int64_t t_start_us;
@ -306,9 +352,6 @@ struct llama_context_unified : public llama_context {
virtual ~llama_context_unified();
virtual uint32_t n_ctx() const override;
virtual uint32_t n_batch() const override;
virtual uint32_t n_ubatch() const override;
virtual uint32_t n_seq_max() const override;
virtual llama_kv_cache * get_kv_self() override;
@ -316,8 +359,6 @@ struct llama_context_unified : public llama_context {
virtual void kv_self_update() override;
virtual enum llama_pooling_type pooling_type() const override;
virtual float * get_logits() override;
virtual float * get_logits_ith(int32_t i) override;