context : improve llama_context encapsulation

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-02-12 12:11:30 +02:00
parent b52b79b048
commit 8da7f612b7
5 changed files with 328 additions and 158 deletions

View File

@ -91,7 +91,7 @@ bool llama_adapter_cvec::init(const llama_model & model) {
return true;
}
int32_t llama_adapter_cvec::apply(
bool llama_adapter_cvec::apply(
const llama_model & model,
const float * data,
size_t len,
@ -104,17 +104,17 @@ int32_t llama_adapter_cvec::apply(
// disable the current control vector (but leave allocated for later)
layer_start = -1;
layer_end = -1;
return 0;
return true;
}
if (n_embd != (int) hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
return false;
}
if (tensors.empty()) {
if (!init(model)) {
return 1;
return false;
}
}
@ -130,7 +130,7 @@ int32_t llama_adapter_cvec::apply(
}
}
return 0;
return true;
}
// lora

View File

@ -19,7 +19,7 @@ struct llama_adapter_cvec {
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
int32_t apply(
bool apply(
const llama_model & model,
const float * data,
size_t len,

View File

@ -33,7 +33,9 @@ static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t
return relative_bucket;
}
//
// llama_context
//
llama_context::llama_context(const llama_model & model) :
model (model),
@ -43,6 +45,52 @@ llama_context::llama_context(const llama_model & model) :
llama_context::~llama_context() = default;
const llama_model & llama_context::get_model() const {
return model;
}
const llama_cparams & llama_context::get_cparams() const {
return cparams;
}
uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
uint32_t llama_context::n_batch() const {
return cparams.n_batch;
}
uint32_t llama_context::n_ubatch() const {
return cparams.n_ubatch;
}
uint32_t llama_context::n_threads() const {
return cparams.n_threads;
}
uint32_t llama_context::n_threads_batch() const {
return cparams.n_threads_batch;
}
enum llama_pooling_type llama_context::pooling_type() const {
return cparams.pooling_type;
}
int64_t llama_context::n_pos_per_token() const {
return model.arch == LLM_ARCH_QWEN2VL ? 4 : 1;
}
ggml_context_ptr llama_context::init() {
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute_meta.size(),
/*.mem_buffer =*/ buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
return ggml_context_ptr { ggml_init(params) };
}
void llama_context::synchronize() {
ggml_backend_sched_synchronize(sched.get());
@ -73,21 +121,96 @@ void llama_context::synchronize() {
t_compute_start_us = 0;
}
int64_t llama_context::n_pos_per_token() const {
return model.arch == LLM_ARCH_QWEN2VL ? 4 : 1;
void llama_context::attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
this->threadpool = threadpool;
this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
}
ggml_context_ptr llama_context::init() {
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute_meta.size(),
/*.mem_buffer =*/ buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
return ggml_context_ptr { ggml_init(params) };
void llama_context::detach_threadpool() {
this->threadpool = nullptr;
this->threadpool_batch = nullptr;
}
void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) {
cparams.n_threads = n_threads;
cparams.n_threads_batch = n_threads_batch;
}
void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) {
this->abort_callback = abort_callback;
this->abort_callback_data = abort_callback_data;
for (auto & backend : backends) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data);
}
}
}
void llama_context::set_embeddings(bool value) {
cparams.embeddings = value;
}
void llama_context::set_causal_attn(bool value) {
cparams.causal_attn = value;
}
void llama_context::set_adapter_lora(
struct llama_adapter_lora * adapter,
float scale) {
loras[adapter] = scale;
}
bool llama_context::rm_adapter_lora(
struct llama_adapter_lora * adapter) {
auto pos = loras.find(adapter);
if (pos != loras.end()) {
loras.erase(pos);
return true;
}
return false;
}
void llama_context::clear_adapter_lora() {
loras.clear();
}
bool llama_context::apply_adapter_cvec(
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end) {
return cvec.apply(model, data, len, n_embd, il_start, il_end);
}
llama_perf_context_data llama_context::get_perf() const {
llama_perf_context_data data = {};
data.t_start_ms = 1e-3 * t_start_us;
data.t_load_ms = 1e-3 * t_load_us;
data.t_p_eval_ms = 1e-3 * t_p_eval_us;
data.t_eval_ms = 1e-3 * t_eval_us;
data.n_p_eval = std::max(1, n_p_eval);
data.n_eval = std::max(1, n_eval);
return data;
}
void llama_context::perf_reset() {
t_start_us = ggml_time_us();
t_eval_us = n_eval = 0;
t_p_eval_us = n_p_eval = 0;
}
//
// llama_context_unified
//
llama_context_unified::llama_context_unified(
const llama_model & model,
@ -396,18 +519,6 @@ llama_context_unified::llama_context_unified(
llama_context_unified::~llama_context_unified() = default;
uint32_t llama_context_unified::n_ctx() const {
return cparams.n_ctx;
}
uint32_t llama_context_unified::n_batch() const {
return cparams.n_batch;
}
uint32_t llama_context_unified::n_ubatch() const {
return cparams.n_ubatch;
}
uint32_t llama_context_unified::n_seq_max() const {
// TODO: add notion of n_seq_max to llama_kv_cache and use it here
return kv_self.size;
@ -421,10 +532,6 @@ const llama_kv_cache * llama_context_unified::get_kv_self() const {
return &kv_self;
}
enum llama_pooling_type llama_context_unified::pooling_type() const {
return cparams.pooling_type;
}
float * llama_context_unified::get_logits() {
// reorder logits for backward compatibility
reorder_outputs();
@ -1718,7 +1825,13 @@ size_t llama_context_unified::reserve_outputs(size_t n_outputs) {
return n_outputs_max;
}
// do mat_mul, while optionally apply lora
ggml_tensor * llama_context::build_cvec(
ggml_context * ctx0,
ggml_tensor * cur,
int il) {
return cvec.apply_to(ctx0, cur, il);
}
ggml_tensor * llama_context::build_lora_mm(
ggml_context * ctx0,
ggml_tensor * w,
@ -1746,7 +1859,6 @@ ggml_tensor * llama_context::build_lora_mm(
return res;
}
// do mat_mul_id, while optionally apply lora
ggml_tensor * llama_context::build_lora_mm_id(
ggml_context * ctx0,
ggml_tensor * w,
@ -2994,7 +3106,8 @@ struct llama_data_write {
}
void write_model_info() {
const std::string arch_str = llm_arch_name(ctx->model.arch);
const auto & model = ctx->get_model();
const std::string arch_str = llm_arch_name(model.arch);
write_string(arch_str);
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
@ -3015,7 +3128,7 @@ struct llama_data_write {
std::vector<int32_t> output_pos;
const size_t n_batch = ctx->cparams.n_batch;
const size_t n_batch = ctx->n_batch();
const auto & output_ids = ctx->output_ids;
GGML_ASSERT(n_outputs <= ctx->output_size);
@ -3040,7 +3153,9 @@ struct llama_data_write {
}
void write_logits() {
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.vocab.n_tokens());
const auto & model = ctx->get_model();
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * model.vocab.n_tokens());
write(&logits_size, sizeof(logits_size));
@ -3050,7 +3165,9 @@ struct llama_data_write {
}
void write_embeddings() {
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
const auto & model = ctx->get_model();
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * model.hparams.n_embd);
write(&embeddings_size, sizeof(embeddings_size));
@ -3079,7 +3196,9 @@ struct llama_data_read {
// validate model information
void read_model_info() {
const std::string cur_arch_str = llm_arch_name(ctx->model.arch);
const auto & model = ctx->get_model();
const std::string cur_arch_str = llm_arch_name(model.arch);
std::string arch_str;
read_string(arch_str);
@ -3117,8 +3236,8 @@ struct llama_data_read {
for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
int32_t id = output_pos[i];
if ((uint32_t) id >= ctx->cparams.n_batch) {
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
if ((uint32_t) id >= ctx->n_batch()) {
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->n_batch()));
}
ctx->output_ids[id] = i;
}
@ -3598,7 +3717,7 @@ uint32_t llama_n_seq_max(const struct llama_context * ctx) {
}
const llama_model * llama_get_model(const llama_context * ctx) {
return &ctx->model;
return &ctx->get_model();
}
llama_kv_cache * llama_get_kv_self(llama_context * ctx) {
@ -3614,50 +3733,38 @@ enum llama_pooling_type llama_pooling_type(const llama_context * ctx) {
}
void llama_attach_threadpool(
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
ctx->threadpool = threadpool;
ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
ctx->attach_threadpool(threadpool, threadpool_batch);
}
void llama_detach_threadpool(struct llama_context * ctx) {
ctx->threadpool = nullptr;
ctx->threadpool_batch = nullptr;
ctx->detach_threadpool();
}
void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
ctx->cparams.n_threads = n_threads;
ctx->cparams.n_threads_batch = n_threads_batch;
ctx->set_n_threads(n_threads, n_threads_batch);
}
int32_t llama_n_threads(struct llama_context * ctx) {
return ctx->cparams.n_threads;
return ctx->n_threads();
}
int32_t llama_n_threads_batch(struct llama_context * ctx) {
return ctx->cparams.n_threads_batch;
return ctx->n_threads_batch();
}
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
for (auto & backend : ctx->backends) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data);
}
}
ctx->set_abort_callback(abort_callback, abort_callback_data);
}
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
ctx->set_embeddings(embeddings);
}
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
ctx->set_causal_attn(causal_attn);
}
void llama_synchronize(struct llama_context * ctx) {
@ -3700,24 +3807,21 @@ int32_t llama_set_adapter_lora(
struct llama_context * ctx,
struct llama_adapter_lora * adapter,
float scale) {
ctx->loras[adapter] = scale;
ctx->set_adapter_lora(adapter, scale);
return 0;
}
int32_t llama_rm_adapter_lora(
struct llama_context * ctx,
struct llama_adapter_lora * adapter) {
auto pos = ctx->loras.find(adapter);
if (pos != ctx->loras.end()) {
ctx->loras.erase(pos);
return 0;
}
bool res = ctx->rm_adapter_lora(adapter);
return -1;
return res ? 0 : -1;
}
void llama_clear_adapter_lora(struct llama_context * ctx) {
ctx->loras.clear();
ctx->clear_adapter_lora();
}
int32_t llama_apply_adapter_cvec(
@ -3727,7 +3831,9 @@ int32_t llama_apply_adapter_cvec(
int32_t n_embd,
int32_t il_start,
int32_t il_end) {
return ctx->cvec.apply(ctx->model, data, len, n_embd, il_start, il_end);
bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end);
return res ? 0 : -1;
}
//
@ -4008,5 +4114,5 @@ int32_t llama_decode(
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
) {
return ctx->model.tensors_by_name;
return ctx->get_model().tensors_by_name;
}

View File

@ -20,19 +20,23 @@ struct llama_context {
llama_context(const llama_model & model);
virtual ~llama_context();
virtual void synchronize();
const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
virtual uint32_t n_ctx() const = 0;
virtual uint32_t n_batch() const = 0;
virtual uint32_t n_ubatch() const = 0;
virtual uint32_t n_ctx() const;
virtual uint32_t n_batch() const;
virtual uint32_t n_ubatch() const;
virtual uint32_t n_seq_max() const = 0;
virtual uint32_t n_threads() const;
virtual uint32_t n_threads_batch() const;
virtual llama_kv_cache * get_kv_self() = 0;
virtual const llama_kv_cache * get_kv_self() const = 0;
virtual void kv_self_update() = 0;
virtual enum llama_pooling_type pooling_type() const = 0;
virtual enum llama_pooling_type pooling_type() const;
virtual float * get_logits() = 0;
virtual float * get_logits_ith(int32_t i) = 0;
@ -41,10 +45,41 @@ struct llama_context {
virtual float * get_embeddings_ith(int32_t i) = 0;
virtual float * get_embeddings_seq(llama_seq_id seq_id) = 0;
int64_t n_pos_per_token() const; // vision
virtual int64_t n_pos_per_token() const; // vision
virtual ggml_context_ptr init();
virtual void synchronize();
virtual void attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
virtual void detach_threadpool();
virtual void set_n_threads(int32_t n_threads, int32_t n_threads_batch);
virtual void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);
virtual void set_embeddings (bool value);
virtual void set_causal_attn(bool value);
virtual void set_adapter_lora(
struct llama_adapter_lora * adapter,
float scale);
virtual bool rm_adapter_lora(
struct llama_adapter_lora * adapter);
virtual void clear_adapter_lora();
virtual bool apply_adapter_cvec(
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
// decode a batch of tokens by evaluating the transformer
// in case of unsuccessful decoding (error or warning),
// the kv_cache state will be returned to its original state
@ -73,6 +108,12 @@ struct llama_context {
// graph build API (generic)
// apply control vector for layer il
virtual ggml_tensor * build_cvec(
ggml_context * ctx0,
ggml_tensor * cur,
int il);
// do mat_mul, while optionally apply lora
virtual ggml_tensor * build_lora_mm(
ggml_context * ctx0,
@ -221,11 +262,11 @@ struct llama_context {
// state save/load
virtual size_t state_get_size() = 0;
virtual size_t state_get_size() = 0;
virtual size_t state_get_data( uint8_t * dst, size_t size) = 0;
virtual size_t state_set_data(const uint8_t * src, size_t size) = 0;
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) = 0;
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) = 0;
@ -253,8 +294,19 @@ struct llama_context {
const llama_token * tokens,
size_t n_token_count) = 0;
// perf
virtual llama_perf_context_data get_perf() const;
virtual void perf_reset();
// members
// TODO: temporary public until llama_context implements the graph build function
std::vector<ggml_backend_ptr> backends;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_sched_ptr sched;
protected:
const llama_model & model;
llama_cparams cparams;
@ -267,17 +319,11 @@ struct llama_context {
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_sched_ptr sched;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
// perf
bool has_evaluated_once = false;
mutable int64_t t_start_us;
@ -306,9 +352,6 @@ struct llama_context_unified : public llama_context {
virtual ~llama_context_unified();
virtual uint32_t n_ctx() const override;
virtual uint32_t n_batch() const override;
virtual uint32_t n_ubatch() const override;
virtual uint32_t n_seq_max() const override;
virtual llama_kv_cache * get_kv_self() override;
@ -316,8 +359,6 @@ struct llama_context_unified : public llama_context {
virtual void kv_self_update() override;
virtual enum llama_pooling_type pooling_type() const override;
virtual float * get_logits() override;
virtual float * get_logits_ith(int32_t i) override;

View File

@ -59,8 +59,6 @@ struct llm_build_context {
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_ubatch & ubatch;
const llama_adapter_cvec & cvec;
const llama_loras & loras;
const int64_t n_embd;
const int64_t n_layer;
@ -105,12 +103,10 @@ struct llm_build_context {
const llm_build_cb & cb,
bool worst_case) :
lctx (lctx),
model (lctx.model),
model (lctx.get_model()),
hparams (model.hparams),
cparams (lctx.cparams),
cparams (lctx.get_cparams()),
ubatch (ubatch),
cvec (lctx.cvec),
loras (lctx.loras),
n_embd (hparams.n_embd),
n_layer (hparams.n_layer),
n_rot (hparams.n_rot),
@ -791,7 +787,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -947,7 +943,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1067,7 +1063,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1171,7 +1168,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1287,7 +1285,8 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cur = ggml_add(ctx0, cur, inpL);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1436,7 +1435,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1564,7 +1563,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1670,7 +1669,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -1761,7 +1761,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2057,7 +2058,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2194,7 +2196,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2342,7 +2345,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2454,7 +2458,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2565,7 +2570,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2680,7 +2686,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2823,7 +2830,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -2944,7 +2952,8 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_output);
cur = ggml_add(ctx0, cur, inpL);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3083,7 +3092,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, residual, cur);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3190,7 +3200,8 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, sa_out);
cur = ggml_add(ctx0, cur, inpL);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3296,7 +3307,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3406,7 +3418,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3521,7 +3534,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3638,7 +3652,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3842,7 +3857,8 @@ struct llm_build_context {
cb(cur, "hidden_scaled_ffn", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -3954,7 +3970,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, sa_out);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4077,7 +4094,8 @@ struct llm_build_context {
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4202,7 +4220,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4256,7 +4275,8 @@ struct llm_build_context {
// residual
cur = ggml_add(ctx0, cur, inpL);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4397,7 +4417,8 @@ struct llm_build_context {
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4527,7 +4548,8 @@ struct llm_build_context {
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4655,7 +4677,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4774,7 +4796,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -4899,7 +4921,8 @@ struct llm_build_context {
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -5024,7 +5047,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
inpL = cur;
@ -5137,7 +5161,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, attn_out);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -5165,7 +5190,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -5293,7 +5319,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_out);
cb(cur, "ffn_out", il);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -5446,7 +5472,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -5673,7 +5700,8 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -6492,7 +6520,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -6614,7 +6642,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -6704,7 +6732,7 @@ struct llm_build_context {
cur = ggml_scale(ctx0, cur, 0.5F);
}
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -6787,7 +6815,8 @@ struct llm_build_context {
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -6947,7 +6976,7 @@ struct llm_build_context {
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cur = lctx.build_cvec(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
@ -7140,7 +7169,8 @@ static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
const llama_ubatch & ubatch,
bool worst_case) {
const auto & model = lctx.model;
const auto & model = lctx.get_model();
const auto & cparams = lctx.get_cparams();
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
@ -7150,7 +7180,7 @@ static struct ggml_cgraph * llama_build_graph(
ggml_set_name(cur, name);
}
if (!lctx.cparams.offload_kqv) {
if (!cparams.offload_kqv) {
if (strcmp(name, "kqv_merged_cont") == 0) {
// all nodes between the KV store and the attention output are run on the CPU
ggml_backend_sched_set_tensor_backend(lctx.sched.get(), cur, lctx.backend_cpu);
@ -7159,10 +7189,10 @@ static struct ggml_cgraph * llama_build_graph(
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
// FIXME: fix in ggml_backend_sched
const bool full_offload = lctx.model.params.n_gpu_layers > (int) lctx.model.hparams.n_layer;
const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer;
if (ubatch.n_tokens < 32 || full_offload) {
if (il != -1 && strcmp(name, "norm") == 0) {
const auto & dev_layer = lctx.model.dev_layer(il);
const auto & dev_layer = model.dev_layer(il);
for (auto & backend : lctx.backends) {
if (ggml_backend_get_device(backend.get()) == dev_layer) {
if (ggml_backend_supports_op(backend.get(), cur)) {
@ -7394,7 +7424,7 @@ static struct ggml_cgraph * llama_build_graph(
}
// add on pooling layer
if (lctx.cparams.embeddings) {
if (cparams.embeddings) {
result = llm.append_pooling(result);
}
@ -7824,12 +7854,7 @@ struct llama_perf_context_data llama_perf_context(const struct llama_context * c
return data;
}
data.t_start_ms = 1e-3 * ctx->t_start_us;
data.t_load_ms = 1e-3 * ctx->t_load_us;
data.t_p_eval_ms = 1e-3 * ctx->t_p_eval_us;
data.t_eval_ms = 1e-3 * ctx->t_eval_us;
data.n_p_eval = std::max(1, ctx->n_p_eval);
data.n_eval = std::max(1, ctx->n_eval);
data = ctx->get_perf();
return data;
}
@ -7848,7 +7873,5 @@ void llama_perf_context_print(const struct llama_context * ctx) {
}
void llama_perf_context_reset(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
ctx->perf_reset();
}