mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-08 01:26:51 -04:00
ggml: Add basic SET_ROWS support in WebGPU (#15137)
* Begin work on set_rows * Work on set rows * Add error buffers for reporting unsupported SET_ROWS indices * Remove extra comments
This commit is contained in:
2
.github/workflows/build.yml
vendored
2
.github/workflows/build.yml
vendored
@@ -179,7 +179,6 @@ jobs:
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
export LLAMA_SET_ROWS=0
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
@@ -438,7 +437,6 @@ jobs:
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
export LLAMA_SET_ROWS=0
|
||||
cd build
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
@@ -19,18 +19,21 @@
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_WEBGPU_DEBUG
|
||||
# define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
|
||||
# define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
|
||||
# define WEBGPU_DEBUG_BUF_ELEMS 32
|
||||
#else
|
||||
# define WEBGPU_LOG_DEBUG(msg) ((void) 0)
|
||||
#endif // GGML_WEBGPU_DEBUG
|
||||
|
||||
/* Constants */
|
||||
|
||||
#define WEBGPU_COMMAND_SUBMIT_BATCH_SIZE 16
|
||||
#define WEBGPU_MUL_MAT_WG_SIZE 64
|
||||
#define WEBGPU_NUM_PARAM_BUFS 100
|
||||
#define WEBGPU_PARAMS_BUF_SIZE_BYTES 256
|
||||
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
|
||||
#define WEBGPU_COMMAND_SUBMIT_BATCH_SIZE 16
|
||||
#define WEBGPU_MUL_MAT_WG_SIZE 64
|
||||
#define WEBGPU_NUM_PARAM_BUFS 100
|
||||
#define WEBGPU_PARAMS_BUF_SIZE_BYTES 128 // enough for 32 parameters
|
||||
#define WEBGPU_NUM_SET_ROWS_ERROR_BUFS 32
|
||||
#define WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES 4
|
||||
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
|
||||
|
||||
/* End Constants */
|
||||
|
||||
@@ -54,46 +57,42 @@ static void ggml_webgpu_create_buffer(wgpu::Device & device,
|
||||
wgpu::BufferUsage usage,
|
||||
const char * label);
|
||||
|
||||
struct webgpu_param_bufs {
|
||||
struct webgpu_pool_bufs {
|
||||
wgpu::Buffer host_buf;
|
||||
wgpu::Buffer dev_buf;
|
||||
};
|
||||
|
||||
// Holds a pool of parameter buffers for WebGPU operations
|
||||
struct webgpu_param_buf_pool {
|
||||
std::vector<webgpu_param_bufs> free;
|
||||
struct webgpu_buf_pool {
|
||||
std::vector<webgpu_pool_bufs> free;
|
||||
|
||||
std::mutex mutex;
|
||||
|
||||
std::condition_variable cv;
|
||||
|
||||
void init(wgpu::Device device) {
|
||||
for (int i = 0; i < WEBGPU_NUM_PARAM_BUFS; i++) {
|
||||
void init(wgpu::Device device,
|
||||
int num_bufs,
|
||||
size_t buf_size,
|
||||
wgpu::BufferUsage dev_buf_usage,
|
||||
wgpu::BufferUsage host_buf_usage) {
|
||||
for (int i = 0; i < num_bufs; i++) {
|
||||
wgpu::Buffer host_buf;
|
||||
wgpu::Buffer dev_buf;
|
||||
ggml_webgpu_create_buffer(device,
|
||||
host_buf,
|
||||
WEBGPU_PARAMS_BUF_SIZE_BYTES,
|
||||
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite,
|
||||
"ggml_webgpu_host_params_buf");
|
||||
ggml_webgpu_create_buffer(device,
|
||||
dev_buf,
|
||||
WEBGPU_PARAMS_BUF_SIZE_BYTES,
|
||||
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform,
|
||||
"ggml_webgpu_dev_params_buf");
|
||||
ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_pool_buf");
|
||||
ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_pool_buf");
|
||||
free.push_back({ host_buf, dev_buf });
|
||||
}
|
||||
}
|
||||
|
||||
webgpu_param_bufs alloc_bufs() {
|
||||
webgpu_pool_bufs alloc_bufs() {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
cv.wait(lock, [this] { return !free.empty(); });
|
||||
webgpu_param_bufs bufs = free.back();
|
||||
webgpu_pool_bufs bufs = free.back();
|
||||
free.pop_back();
|
||||
return bufs;
|
||||
}
|
||||
|
||||
void free_bufs(std::vector<webgpu_param_bufs> bufs) {
|
||||
void free_bufs(std::vector<webgpu_pool_bufs> bufs) {
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
free.insert(free.end(), bufs.begin(), bufs.end());
|
||||
cv.notify_all();
|
||||
@@ -121,10 +120,12 @@ struct webgpu_context_struct {
|
||||
|
||||
bool device_init = false;
|
||||
|
||||
webgpu_param_buf_pool param_buf_pool;
|
||||
webgpu_buf_pool param_buf_pool;
|
||||
webgpu_buf_pool set_rows_error_buf_pool;
|
||||
|
||||
wgpu::ComputePipeline memset_pipeline;
|
||||
wgpu::ComputePipeline mul_mat_pipeline;
|
||||
wgpu::ComputePipeline set_rows_pipeline;
|
||||
wgpu::ComputePipeline cpy_pipeline;
|
||||
|
||||
size_t memset_bytes_per_thread;
|
||||
@@ -136,9 +137,16 @@ struct webgpu_context_struct {
|
||||
std::vector<wgpu::CommandBuffer> staged_command_bufs;
|
||||
|
||||
// Parameter buffers associated with the staged command buffers
|
||||
std::vector<webgpu_param_bufs> staged_param_bufs;
|
||||
std::vector<webgpu_pool_bufs> staged_param_bufs;
|
||||
// Buffers associated with set_rows operations, used to store potential errors
|
||||
std::vector<webgpu_pool_bufs> staged_set_row_error_bufs;
|
||||
|
||||
std::vector<wgpu::FutureWaitInfo> callback_futures;
|
||||
|
||||
#ifdef GGML_WEBGPU_DEBUG
|
||||
wgpu::Buffer debug_host_buf;
|
||||
wgpu::Buffer debug_dev_buf;
|
||||
#endif
|
||||
};
|
||||
|
||||
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
|
||||
@@ -249,20 +257,55 @@ static void ggml_backend_webgpu_submit_queue(webgpu_context & ctx) {
|
||||
return;
|
||||
}
|
||||
ctx->queue.Submit(ctx->staged_command_bufs.size(), ctx->staged_command_bufs.data());
|
||||
|
||||
// If there are SET_ROWS operations in this submission, copy their error buffers to the host.
|
||||
if (ctx->staged_set_row_error_bufs.size() > 0) {
|
||||
wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder();
|
||||
for (auto & error_bufs : ctx->staged_set_row_error_bufs) {
|
||||
// Copy the error buffer to the host buffer
|
||||
encoder.CopyBufferToBuffer(error_bufs.dev_buf, 0, error_bufs.host_buf, 0, error_bufs.host_buf.GetSize());
|
||||
}
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
ctx->queue.Submit(1, &commands);
|
||||
}
|
||||
|
||||
ctx->staged_command_bufs.clear();
|
||||
std::vector<webgpu_param_bufs> staged_param_bufs = std::move(ctx->staged_param_bufs);
|
||||
std::vector<webgpu_pool_bufs> staged_param_bufs = std::move(ctx->staged_param_bufs);
|
||||
std::vector<webgpu_pool_bufs> staged_set_row_error_bufs = std::move(ctx->staged_set_row_error_bufs);
|
||||
|
||||
// Free the staged parameter buffers once the submission completes
|
||||
wgpu::Future f = ctx->queue.OnSubmittedWorkDone(
|
||||
wgpu::Future p_f = ctx->queue.OnSubmittedWorkDone(
|
||||
wgpu::CallbackMode::AllowSpontaneous,
|
||||
[ctx, staged_param_bufs](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
|
||||
if (status != wgpu::QueueWorkDoneStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", message.data);
|
||||
}
|
||||
// Free the staged parameter buffers
|
||||
// Free the staged buffers
|
||||
ctx->param_buf_pool.free_bufs(staged_param_bufs);
|
||||
});
|
||||
ctx->callback_futures.push_back({ f });
|
||||
ctx->callback_futures.push_back({ p_f });
|
||||
|
||||
// Check for errrors in SET_ROWS operations
|
||||
for (auto & error_bufs : staged_set_row_error_bufs) {
|
||||
wgpu::Future f = error_bufs.host_buf.MapAsync(
|
||||
wgpu::MapMode::Read,
|
||||
0,
|
||||
error_bufs.host_buf.GetSize(),
|
||||
wgpu::CallbackMode::AllowSpontaneous,
|
||||
[ctx, error_bufs](wgpu::MapAsyncStatus status, wgpu::StringView message) {
|
||||
if (status != wgpu::MapAsyncStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to map error buffer: %s\n", message.data);
|
||||
} else {
|
||||
const uint32_t * error_data = (const uint32_t *) error_bufs.host_buf.GetConstMappedRange();
|
||||
if (*error_data) {
|
||||
GGML_ABORT("ggml_webgpu: SET_ROWS index > 2^32, unsupported.");
|
||||
}
|
||||
// We can't unmap in here due to WebGPU reentrancy limitations.
|
||||
ctx->set_rows_error_buf_pool.free_bufs({ error_bufs });
|
||||
}
|
||||
});
|
||||
ctx->callback_futures.push_back({ f });
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_map_buffer(webgpu_context & ctx,
|
||||
@@ -283,13 +326,34 @@ static void ggml_backend_webgpu_map_buffer(webgpu_context & ctx,
|
||||
UINT64_MAX);
|
||||
}
|
||||
|
||||
#ifdef GGML_WEBGPU_DEBUG
|
||||
// This function adds debugging information to shaders, as WebGPU does not support printing directly.
|
||||
// To use, add a bind group entry to the setup for the shader you are debugging, add the buffer and
|
||||
// debug statements in the shader, and then call this function after encoding the commands and submitting them.
|
||||
static void ggml_backend_webgpu_debug(webgpu_context & ctx) {
|
||||
wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder();
|
||||
encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize());
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
ctx->queue.Submit(1, &commands);
|
||||
|
||||
ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize());
|
||||
const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange();
|
||||
std::cout << "debug data:";
|
||||
for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) {
|
||||
std::cout << " " << i << ": " << debug_data[i];
|
||||
}
|
||||
std::cout << "\n";
|
||||
ctx->debug_host_buf.Unmap();
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_backend_webgpu_build_and_enqueue(webgpu_context & ctx,
|
||||
wgpu::ComputePipeline & pipeline,
|
||||
std::vector<uint32_t> params,
|
||||
std::vector<wgpu::BindGroupEntry> bind_group_entries,
|
||||
uint32_t wg_x,
|
||||
bool submit_and_wait = false) {
|
||||
webgpu_param_bufs params_bufs = ctx->param_buf_pool.alloc_bufs();
|
||||
webgpu_pool_bufs params_bufs = ctx->param_buf_pool.alloc_bufs();
|
||||
|
||||
ggml_backend_webgpu_map_buffer(ctx, params_bufs.host_buf, wgpu::MapMode::Write, 0, params_bufs.host_buf.GetSize());
|
||||
uint32_t * _params = (uint32_t *) params_bufs.host_buf.GetMappedRange();
|
||||
@@ -429,6 +493,76 @@ static void ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor
|
||||
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->cpy_pipeline, params, entries, wg_x);
|
||||
}
|
||||
|
||||
static void ggml_webgpu_set_rows(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * idx, ggml_tensor * dst) {
|
||||
// For set rows specifically, we need to check if src and idx are empty tensors.
|
||||
if (ggml_is_empty(src) || ggml_is_empty(idx)) {
|
||||
return;
|
||||
}
|
||||
|
||||
webgpu_pool_bufs error_bufs = ctx->set_rows_error_buf_pool.alloc_bufs();
|
||||
if (error_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) {
|
||||
error_bufs.host_buf.Unmap();
|
||||
}
|
||||
|
||||
size_t src_offset = ggml_backend_webgpu_tensor_offset(src);
|
||||
// assumes power of 2 offset alignment
|
||||
size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
// align to minimum offset alignment
|
||||
src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
size_t idx_offset = ggml_backend_webgpu_tensor_offset(idx);
|
||||
size_t idx_misalignment = idx_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
idx_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
size_t dst_offset = ggml_backend_webgpu_tensor_offset(dst);
|
||||
size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
|
||||
std::vector<uint32_t> params = { (uint32_t) (src_misalignment / ggml_type_size(src->type)),
|
||||
(uint32_t) (idx_misalignment / ggml_type_size(idx->type)),
|
||||
(uint32_t) (dst_misalignment / ggml_type_size(dst->type)),
|
||||
// Convert byte-strides to element-strides
|
||||
(uint32_t) (src->nb[1] / ggml_type_size(src->type)),
|
||||
(uint32_t) (src->nb[2] / ggml_type_size(src->type)),
|
||||
(uint32_t) (src->nb[3] / ggml_type_size(src->type)),
|
||||
(uint32_t) (idx->nb[0] / ggml_type_size(idx->type)),
|
||||
(uint32_t) (idx->nb[1] / ggml_type_size(idx->type)),
|
||||
(uint32_t) (idx->nb[2] / ggml_type_size(idx->type)),
|
||||
(uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
|
||||
(uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
|
||||
(uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
|
||||
// Shape of src
|
||||
(uint32_t) src->ne[0],
|
||||
(uint32_t) src->ne[1],
|
||||
(uint32_t) src->ne[2],
|
||||
(uint32_t) src->ne[3],
|
||||
// Shape of idx
|
||||
(uint32_t) (idx->ne[1]),
|
||||
(uint32_t) (idx->ne[2]) };
|
||||
|
||||
std::vector<wgpu::BindGroupEntry> entries = {
|
||||
{ .binding = 0,
|
||||
.buffer = ggml_backend_webgpu_tensor_buf(src),
|
||||
.offset = ggml_backend_webgpu_tensor_offset(src),
|
||||
.size = ggml_nbytes(src) },
|
||||
{ .binding = 1,
|
||||
.buffer = ggml_backend_webgpu_tensor_buf(idx),
|
||||
.offset = ggml_backend_webgpu_tensor_offset(idx),
|
||||
.size = ggml_nbytes(idx) },
|
||||
{ .binding = 2,
|
||||
.buffer = ggml_backend_webgpu_tensor_buf(dst),
|
||||
.offset = ggml_backend_webgpu_tensor_offset(dst),
|
||||
.size = ggml_nbytes(dst) },
|
||||
{ .binding = 3, .buffer = error_bufs.dev_buf, .offset = 0, .size = error_bufs.dev_buf.GetSize() }
|
||||
};
|
||||
|
||||
size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX;
|
||||
uint32_t wg_x = (src->ne[1] * src->ne[2] * src->ne[3] + max_wg_size - 1) / max_wg_size;
|
||||
|
||||
std::lock_guard<std::recursive_mutex> lock(ctx->mutex);
|
||||
ctx->staged_set_row_error_bufs.push_back(error_bufs);
|
||||
|
||||
ggml_backend_webgpu_build_and_enqueue(ctx, ctx->set_rows_pipeline, params, entries, wg_x);
|
||||
}
|
||||
|
||||
static void ggml_webgpu_mul_mat(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) {
|
||||
std::vector<uint32_t> params = {
|
||||
(uint32_t) dst->ne[1], // number of rows in result (M)
|
||||
@@ -487,6 +621,11 @@ static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
|
||||
ggml_webgpu_cpy(ctx, src0, node);
|
||||
break;
|
||||
}
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
ggml_webgpu_set_rows(ctx, src0, src1, node);
|
||||
break;
|
||||
}
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
ggml_webgpu_mul_mat(ctx, src0, src1, node);
|
||||
@@ -771,6 +910,14 @@ static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) {
|
||||
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat");
|
||||
}
|
||||
|
||||
static void ggml_webgpu_init_set_rows_pipeline(webgpu_context & webgpu_ctx) {
|
||||
std::vector<wgpu::ConstantEntry> constants(1);
|
||||
constants[0].key = "wg_size";
|
||||
constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
|
||||
ggml_webgpu_create_pipeline(
|
||||
webgpu_ctx->device, webgpu_ctx->set_rows_pipeline, wgsl_set_rows, "set_rows", constants);
|
||||
}
|
||||
|
||||
static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) {
|
||||
std::vector<wgpu::ConstantEntry> constants(1);
|
||||
constants[0].key = "wg_size";
|
||||
@@ -827,11 +974,35 @@ static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, co
|
||||
webgpu_ctx->queue = webgpu_ctx->device.GetQueue();
|
||||
|
||||
// Create buffer pool for shader parameters
|
||||
webgpu_ctx->param_buf_pool.init(webgpu_ctx->device);
|
||||
webgpu_ctx->param_buf_pool.init(webgpu_ctx->device,
|
||||
WEBGPU_NUM_PARAM_BUFS,
|
||||
WEBGPU_PARAMS_BUF_SIZE_BYTES,
|
||||
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform,
|
||||
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite);
|
||||
webgpu_ctx->set_rows_error_buf_pool.init(webgpu_ctx->device,
|
||||
WEBGPU_NUM_SET_ROWS_ERROR_BUFS,
|
||||
WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES,
|
||||
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Storage,
|
||||
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead);
|
||||
|
||||
ggml_webgpu_init_memset_pipeline(webgpu_ctx);
|
||||
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
|
||||
ggml_webgpu_init_set_rows_pipeline(webgpu_ctx);
|
||||
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
|
||||
|
||||
#ifdef GGML_WEBGPU_DEBUG
|
||||
// Initialize debug buffers
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device,
|
||||
webgpu_ctx->debug_host_buf,
|
||||
WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t),
|
||||
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead,
|
||||
"debug_host_buf");
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device,
|
||||
webgpu_ctx->debug_dev_buf,
|
||||
WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t),
|
||||
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc,
|
||||
"debug_dev_buf");
|
||||
#endif
|
||||
webgpu_ctx->device_init = true;
|
||||
}
|
||||
|
||||
@@ -882,7 +1053,7 @@ static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
return true;
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CPY | GGML_OP_SET_ROWS:
|
||||
return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
|
82
ggml/src/ggml-webgpu/wgsl-shaders/set_rows.wgsl
Normal file
82
ggml/src/ggml-webgpu/wgsl-shaders/set_rows.wgsl
Normal file
@@ -0,0 +1,82 @@
|
||||
enable f16;
|
||||
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> idx: array<u32>;
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<storage, read_write> dst: array<f16>;
|
||||
|
||||
@group(0) @binding(3)
|
||||
var<storage, read_write> error: atomic<u32>;
|
||||
|
||||
struct Params {
|
||||
offset_src: u32, // in elements
|
||||
offset_idx: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements)
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
stride_idx0: u32,
|
||||
stride_idx1: u32,
|
||||
stride_idx2: u32,
|
||||
|
||||
stride_dst1: u32,
|
||||
stride_dst2: u32,
|
||||
stride_dst3: u32,
|
||||
|
||||
// Shape of src
|
||||
ne0: u32,
|
||||
n_rows: u32,
|
||||
ne2: u32,
|
||||
ne3: u32,
|
||||
|
||||
// Shape of idx
|
||||
idx1: u32,
|
||||
idx2: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(4)
|
||||
var<uniform> params: Params;
|
||||
|
||||
override wg_size: u32;
|
||||
@compute @workgroup_size(wg_size)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= params.n_rows * params.ne2 * params.ne3) {
|
||||
return;
|
||||
}
|
||||
var i = gid.x;
|
||||
let i_src3 = i / (params.ne2 * params.n_rows);
|
||||
let i_dst3 = i / (params.ne2 * 3);
|
||||
|
||||
i = i % (params.ne2 * params.n_rows);
|
||||
let i_src2 = i / params.n_rows;
|
||||
let i_src1 = i % params.n_rows;
|
||||
|
||||
let i_idx2 = i_src3 % params.idx2;
|
||||
let i_idx1 = i_src2 % params.idx1;
|
||||
let i_idx0 = i_src1;
|
||||
|
||||
let idx_high = (params.offset_idx + i_idx0 * params.stride_idx0 + i_idx1 * params.stride_idx1 + i_idx2 * params.stride_idx2) * 2;
|
||||
|
||||
let idx_high_val = idx[idx_high];
|
||||
let idx_low_val = idx[idx_high + 1];
|
||||
|
||||
if (idx_low_val != 0) {
|
||||
// Upper bits of index are not zero, output will be incorrect
|
||||
atomicStore(&error, 1);
|
||||
return;
|
||||
}
|
||||
|
||||
let i_dst_row = params.offset_dst + idx_high_val * params.stride_dst1 + i_src2 * params.stride_dst2 + i_src3 * params.stride_dst3;
|
||||
let i_src_row = params.offset_src + i_src1 * params.stride_src1 + i_src2 * params.stride_src2 + i_src3 * params.stride_src3;
|
||||
|
||||
for (var i: u32 = 0; i < params.ne0; i++) {
|
||||
dst[i_dst_row + i] = f16(src[i_src_row + i]);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user