mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-03 15:57:38 -04:00
@@ -32,7 +32,7 @@ llama_memory_hybrid::llama_memory_hybrid(
|
||||
mem_attn(new llama_kv_cache_unified(
|
||||
model,
|
||||
filter_attn == nullptr ?
|
||||
[&](int32_t il) { return !model.hparams.is_recurrent(il); }
|
||||
[&](int32_t il) { return !hparams.is_recurrent(il); }
|
||||
: filter_attn,
|
||||
type_k,
|
||||
type_v,
|
||||
@@ -47,7 +47,7 @@ llama_memory_hybrid::llama_memory_hybrid(
|
||||
mem_recr(new llama_memory_recurrent(
|
||||
model,
|
||||
filter_recr == nullptr ?
|
||||
[&](int32_t il) { return model.hparams.is_recurrent(il); }
|
||||
[&](int32_t il) { return hparams.is_recurrent(il); }
|
||||
: filter_recr,
|
||||
type_r,
|
||||
type_s,
|
||||
@@ -56,42 +56,49 @@ llama_memory_hybrid::llama_memory_hybrid(
|
||||
n_seq_max
|
||||
)) {}
|
||||
|
||||
llama_memory_state_ptr llama_memory_hybrid::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled) {
|
||||
llama_memory_state_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
||||
do {
|
||||
balloc.split_reset();
|
||||
|
||||
// since this includes a recurrent cache, we cannot use split_simple
|
||||
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
|
||||
// follow the recurrent pattern for creating the ubatch splits
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
|
||||
// follow the recurrent pattern for creating the ubatch splits
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch;
|
||||
while (true) {
|
||||
llama_ubatch ubatch;
|
||||
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = sbatch.split_seq(n_ubatch);
|
||||
} else {
|
||||
ubatch = sbatch.split_equal(n_ubatch);
|
||||
if (embd_all) {
|
||||
// if all tokens are output, split by sequence
|
||||
ubatch = balloc.split_seq(n_ubatch);
|
||||
} else {
|
||||
ubatch = balloc.split_equal(n_ubatch);
|
||||
}
|
||||
|
||||
if (ubatch.n_tokens == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
ubatches.push_back(std::move(ubatch)); // NOLINT
|
||||
}
|
||||
|
||||
ubatches.push_back(ubatch);
|
||||
}
|
||||
// prepare the recurrent batches first
|
||||
if (!mem_recr->prepare(ubatches)) {
|
||||
// TODO: will the recurrent cache be in an undefined state at this point?
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
||||
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
// prepare the recurrent batches first
|
||||
if (!mem_recr->prepare(ubatches)) {
|
||||
// TODO: will the recurrent cache be in an undefined state at this point?
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
||||
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
// prepare the attention cache
|
||||
auto heads_attn = mem_attn->prepare(ubatches);
|
||||
if (heads_attn.empty()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
||||
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
// prepare the attention cache
|
||||
auto heads_attn = mem_attn->prepare(ubatches);
|
||||
if (heads_attn.empty()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
||||
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
return std::make_unique<llama_memory_hybrid_state>(
|
||||
this, std::move(heads_attn), std::move(ubatches));
|
||||
} while(false);
|
||||
|
||||
return std::make_unique<llama_memory_hybrid_state>(
|
||||
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
|
||||
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
||||
}
|
||||
|
||||
llama_memory_state_ptr llama_memory_hybrid::init_full() {
|
||||
@@ -188,15 +195,13 @@ llama_memory_hybrid_state::llama_memory_hybrid_state(
|
||||
|
||||
llama_memory_hybrid_state::llama_memory_hybrid_state(
|
||||
llama_memory_hybrid * mem,
|
||||
llama_sbatch sbatch,
|
||||
std::vector<uint32_t> heads_attn,
|
||||
std::vector<llama_ubatch> ubatches) :
|
||||
sbatch(std::move(sbatch)),
|
||||
ubatches(std::move(ubatches)),
|
||||
// note: here we copy the ubatches. not sure if this is ideal
|
||||
state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), {}, std::move(heads_attn), this->ubatches)),
|
||||
state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), {}, this->ubatches)),
|
||||
status(LLAMA_MEMORY_STATUS_SUCCESS) {
|
||||
state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), std::move(heads_attn), this->ubatches)),
|
||||
state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), this->ubatches)),
|
||||
status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) {
|
||||
}
|
||||
|
||||
bool llama_memory_hybrid_state::next() {
|
||||
@@ -223,12 +228,6 @@ bool llama_memory_hybrid_state::apply() {
|
||||
return res;
|
||||
}
|
||||
|
||||
std::vector<int64_t> & llama_memory_hybrid_state::out_ids() {
|
||||
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
||||
|
||||
return sbatch.out_ids;
|
||||
}
|
||||
|
||||
llama_memory_status llama_memory_hybrid_state::get_status() const {
|
||||
return status;
|
||||
}
|
||||
|
Reference in New Issue
Block a user