convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.
This commit is contained in:
Francis Couture-Harpin
2025-04-08 10:26:24 -04:00
parent 08ecbbe398
commit 3a3682de0b
2 changed files with 51 additions and 18 deletions

View File

@@ -73,7 +73,7 @@ class Model:
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@@ -83,11 +83,23 @@ class Model:
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.lazy = not eager or (remote_hf_model_id is not None)
if remote_hf_model_id is not None:
self.is_safetensors = True
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
self.tensor_names = set(name for name in remote_tensors.keys())
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
self.get_tensors = get_remote_tensors
else:
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@@ -5393,6 +5405,14 @@ class LazyTorchTensor(gguf.LazyBase):
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
dtype = cls._dtype_str_map[remote_tensor.dtype]
shape = remote_tensor.shape
meta = cls.meta_with_dtype_and_shape(dtype, shape)
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
@@ -5516,8 +5536,9 @@ def main() -> None:
if args.remote:
from huggingface_hub import snapshot_download
args.remote = str(dir_model)
local_dir = snapshot_download(
repo_id=str(dir_model),
repo_id=args.remote,
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
dir_model = Path(local_dir)
logger.info(f"Downloaded config and tokenizer to {local_dir}")
@@ -5569,7 +5590,7 @@ def main() -> None:
metadata_override=args.metadata, model_name=args.model_name,
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split)
small_first_shard=args.no_tensor_first_split, remote_hf_model_id=args.remote or None)
if args.vocab_only:
logger.info("Exporting model vocab...")

View File

@@ -1,5 +1,6 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Literal
import json
@@ -71,6 +72,20 @@ def naming_convention(model_name: str | None, base_name: str | None, finetune_st
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"
@dataclass
class RemoteTensor:
dtype: str
shape: tuple[int, ...]
offset_start: int
size: int
url: str
def data(self) -> bytes:
# TODO: handle request errors (maybe with limited retries?)
data = SafetensorRemote.get_data_by_range(url=self.url, start=self.offset_start, size=self.size)
return data
class SafetensorRemote:
"""
Uility class to handle remote safetensor files.
@@ -94,7 +109,7 @@ class SafetensorRemote:
ALIGNMENT = 8 # bytes
@classmethod
def get_list_tensors_hf_model(cls, model_id: str) -> dict[str, tuple[str, list[int], int, int, str]]:
def get_list_tensors_hf_model(cls, model_id: str) -> dict[str, RemoteTensor]:
"""
Get list of tensors from a Hugging Face model repository.
@@ -105,10 +120,7 @@ class SafetensorRemote:
is_single_file = cls.check_file_exist(f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors")
if is_single_file:
url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors"
tensors: dict[str, tuple[str, list[int], int, int, str]] = {}
for key, val in cls.get_list_tensors(url).items():
tensors[key] = (*val, url) # populate the url
return tensors
return cls.get_list_tensors(url)
# case 2: model has multiple files
index_url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors.index.json"
@@ -124,17 +136,17 @@ class SafetensorRemote:
all_files = list(set(weight_map.values()))
all_files.sort() # make sure we load shard files in order
# get the list of tensors
tensors = {}
tensors: dict[str, RemoteTensor] = {}
for file in all_files:
url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/{file}"
for key, val in cls.get_list_tensors(url).items():
tensors[key] = (*val, url) # populate the url
tensors[key] = val
return tensors
raise ValueError(f"Model {model_id} does not have any safetensor files")
@classmethod
def get_list_tensors(cls, url: str) -> dict[str, tuple[str, list[int], int, int]]:
def get_list_tensors(cls, url: str) -> dict[str, RemoteTensor]:
"""
Get list of tensors from a remote safetensor file.
@@ -142,7 +154,7 @@ class SafetensorRemote:
Each tensor is represented as a tuple of (dtype, shape, offset_start, size)
"""
metadata, data_start_offset = cls.get_metadata(url)
res: dict[str, tuple[str, list[int], int, int]] = {}
res: dict[str, RemoteTensor] = {}
for name, meta in metadata.items():
if name == "__metadata__":
@@ -155,7 +167,7 @@ class SafetensorRemote:
offset_start_relative, offset_end_relative = meta["data_offsets"]
size = offset_end_relative - offset_start_relative
offset_start = data_start_offset + offset_start_relative
res[name] = (dtype, shape, offset_start, size)
res[name] = RemoteTensor(dtype=dtype, shape=tuple(shape), offset_start=offset_start, size=size, url=url)
except KeyError as e:
raise ValueError(f"Missing key in metadata for tensor '{name}': {e}, meta = {meta}")