mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-17 16:19:46 +00:00
context : initial abstraction
ggml-ci
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@ -16,38 +16,245 @@
|
||||
|
||||
using llama_loras = std::unordered_map<struct llama_adapter_lora *, float>;
|
||||
|
||||
struct llama_batch_manager_i;
|
||||
|
||||
// TODO: make implementation details private
|
||||
// TODO: become abstract base class, split the current implementation into different child classes
|
||||
struct llama_context {
|
||||
// TODO: tmp until llama-model starts implementing the graph build function
|
||||
typedef std::function<ggml_cgraph *(llama_context &, const llama_ubatch &, bool worst_case)> build_graph_callback;
|
||||
llama_context(const llama_model & model);
|
||||
virtual ~llama_context();
|
||||
|
||||
llama_context(
|
||||
const llama_model & model,
|
||||
const llama_context_params & params,
|
||||
build_graph_callback && cb_build_graph);
|
||||
virtual void synchronize();
|
||||
|
||||
virtual ~llama_context() = default;
|
||||
virtual uint32_t n_ctx() const = 0;
|
||||
virtual uint32_t n_batch() const = 0;
|
||||
virtual uint32_t n_ubatch() const = 0;
|
||||
virtual uint32_t n_seq_max() const = 0;
|
||||
|
||||
const struct llama_model & model;
|
||||
virtual llama_kv_cache * get_kv_self() = 0;
|
||||
virtual const llama_kv_cache * get_kv_self() const = 0;
|
||||
|
||||
virtual void kv_self_update() = 0;
|
||||
|
||||
virtual enum llama_pooling_type pooling_type() const = 0;
|
||||
|
||||
virtual float * get_logits() = 0;
|
||||
virtual float * get_logits_ith(int32_t i) = 0;
|
||||
|
||||
virtual float * get_embeddings() = 0;
|
||||
virtual float * get_embeddings_ith(int32_t i) = 0;
|
||||
virtual float * get_embeddings_seq(llama_seq_id seq_id) = 0;
|
||||
|
||||
int64_t n_pos_per_token() const; // vision
|
||||
|
||||
virtual ggml_context_ptr init();
|
||||
|
||||
virtual int decode(llama_batch & inp_batch) = 0;
|
||||
virtual int encode(llama_batch & inp_batch) = 0;
|
||||
|
||||
// graph build API (generic)
|
||||
|
||||
// do mat_mul, while optionally apply lora
|
||||
virtual ggml_tensor * build_lora_mm(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * w,
|
||||
ggml_tensor * cur);
|
||||
|
||||
// do mat_mul_id, while optionally apply lora
|
||||
virtual ggml_tensor * build_lora_mm_id(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * w, // struct ggml_tensor * as
|
||||
ggml_tensor * cur, // struct ggml_tensor * b
|
||||
ggml_tensor * ids);
|
||||
|
||||
// graph build API (context-specific)
|
||||
|
||||
virtual ggml_tensor * build_inp_embd(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * tok_embd,
|
||||
const llama_ubatch & ubatch) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_pos(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_out_ids(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_mean(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_cls(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) = 0;
|
||||
|
||||
virtual void build_attn_inp(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool causal,
|
||||
bool swa,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual void build_attn_kv_store(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
int32_t n_tokens,
|
||||
int64_t il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_attn_qkv(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur,
|
||||
int32_t n_tokens,
|
||||
float kq_scale,
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_soft_max_ext(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * kq,
|
||||
float kq_scale) = 0;
|
||||
|
||||
virtual ggml_tensor * get_rope_factors(int il) = 0;
|
||||
|
||||
virtual void build_k_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph) = 0;
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
virtual void build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_embd_enc(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_KQ_mask_cross(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_s_copy(
|
||||
ggml_context * ctx0,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_inp_s_mask(
|
||||
ggml_context * ctx0,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_copy_mask_state(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * s,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
int32_t n_tokens,
|
||||
int32_t n_state,
|
||||
int32_t n_seqs,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_mamba_layer(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_rwkv_token_shift_load(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_rwkv_token_shift_store(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
virtual ggml_tensor * build_rwkv6_time_mix(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * x_prev,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case) = 0;
|
||||
|
||||
// state save/load
|
||||
|
||||
virtual size_t state_get_size() = 0;
|
||||
virtual size_t state_get_data( uint8_t * dst, size_t size) = 0;
|
||||
virtual size_t state_set_data(const uint8_t * src, size_t size) = 0;
|
||||
|
||||
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
|
||||
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) = 0;
|
||||
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) = 0;
|
||||
|
||||
virtual bool state_load_file(
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) = 0;
|
||||
|
||||
virtual bool state_save_file(
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) = 0;
|
||||
|
||||
virtual size_t state_seq_load_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) = 0;
|
||||
|
||||
virtual size_t state_seq_save_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) = 0;
|
||||
|
||||
// members
|
||||
|
||||
const llama_model & model;
|
||||
|
||||
llama_cparams cparams;
|
||||
llama_sbatch sbatch; // TODO: revisit if needed
|
||||
llama_adapter_cvec cvec;
|
||||
llama_loras loras;
|
||||
|
||||
build_graph_callback cb_build_graph;
|
||||
ggml_threadpool_t threadpool = nullptr;
|
||||
ggml_threadpool_t threadpool_batch = nullptr;
|
||||
|
||||
ggml_abort_callback abort_callback = nullptr;
|
||||
void * abort_callback_data = nullptr;
|
||||
|
||||
std::vector<ggml_backend_ptr> backends;
|
||||
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
||||
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
||||
ggml_threadpool_t threadpool = nullptr;
|
||||
ggml_threadpool_t threadpool_batch = nullptr;
|
||||
ggml_backend_sched_ptr sched;
|
||||
|
||||
// memory buffers used to evaluate the model
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
|
||||
// perf
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
mutable int64_t t_start_us;
|
||||
@ -60,6 +267,49 @@ struct llama_context {
|
||||
|
||||
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
||||
mutable int32_t n_eval = 0; // number of eval calls
|
||||
};
|
||||
|
||||
// TODO: make implementation details private
|
||||
struct llama_context_unified : public llama_context {
|
||||
struct batch_manager;
|
||||
|
||||
// TODO: tmp until llama-model starts implementing the graph build function
|
||||
typedef std::function<ggml_cgraph *(llama_context &, const llama_ubatch &, bool worst_case)> build_graph_callback;
|
||||
|
||||
llama_context_unified(
|
||||
const llama_model & model,
|
||||
const llama_context_params & params,
|
||||
build_graph_callback && cb_build_graph);
|
||||
|
||||
virtual ~llama_context_unified();
|
||||
|
||||
virtual uint32_t n_ctx() const override;
|
||||
virtual uint32_t n_batch() const override;
|
||||
virtual uint32_t n_ubatch() const override;
|
||||
virtual uint32_t n_seq_max() const override;
|
||||
|
||||
virtual llama_kv_cache * get_kv_self() override;
|
||||
virtual const llama_kv_cache * get_kv_self() const override;
|
||||
|
||||
virtual void kv_self_update() override;
|
||||
|
||||
virtual enum llama_pooling_type pooling_type() const override;
|
||||
|
||||
virtual float * get_logits() override;
|
||||
virtual float * get_logits_ith(int32_t i) override;
|
||||
|
||||
virtual float * get_embeddings() override;
|
||||
virtual float * get_embeddings_ith(int32_t i) override;
|
||||
virtual float * get_embeddings_seq(llama_seq_id seq_id) override;
|
||||
|
||||
virtual ggml_context_ptr init() override;
|
||||
|
||||
virtual int decode(llama_batch & inp_batch) override;
|
||||
virtual int encode(llama_batch & inp_batch) override;
|
||||
|
||||
llama_sbatch sbatch;
|
||||
|
||||
build_graph_callback cb_build_graph;
|
||||
|
||||
// host buffer for the model output (logits and embeddings)
|
||||
ggml_backend_buffer_ptr buf_output;
|
||||
@ -72,7 +322,7 @@ struct llama_context {
|
||||
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
|
||||
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
||||
|
||||
bool logits_all = false;
|
||||
bool logits_all = false;
|
||||
bool need_reserve = false;
|
||||
|
||||
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
||||
@ -84,17 +334,7 @@ struct llama_context {
|
||||
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
||||
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
||||
|
||||
// memory buffers used to evaluate the model
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
ggml_backend_sched_ptr sched;
|
||||
|
||||
ggml_abort_callback abort_callback = nullptr;
|
||||
void * abort_callback_data = nullptr;
|
||||
|
||||
virtual std::unique_ptr<llama_batch_manager_i> prepare_batch(const llama_batch & batch);
|
||||
|
||||
virtual int decode(llama_batch & inp_batch);
|
||||
virtual int encode(llama_batch & inp_batch);
|
||||
virtual std::unique_ptr<batch_manager> prepare_batch(const llama_batch & batch);
|
||||
|
||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||
enum ggml_status compute_graph(
|
||||
@ -107,32 +347,19 @@ struct llama_context {
|
||||
// certain implementations could require a padding for the context size
|
||||
uint32_t get_ctx_padding(const llama_cparams & cparams) const;
|
||||
|
||||
void reset();
|
||||
|
||||
void prepare_k_shift();
|
||||
void prepare_defrag();
|
||||
|
||||
void set_inputs(const llama_ubatch & ubatch);
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
// TODO: maybe deprecate this
|
||||
// TODO: maybe remove this
|
||||
void reorder_outputs();
|
||||
|
||||
// Make sure enough space is available for outputs.
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
size_t reserve_outputs(size_t n_outputs);
|
||||
|
||||
ggml_tensor * build_lora_mm(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * w,
|
||||
ggml_tensor * cur);
|
||||
|
||||
ggml_tensor * build_lora_mm_id(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * w, // struct ggml_tensor * as
|
||||
ggml_tensor * cur, // struct ggml_tensor * b
|
||||
ggml_tensor * ids);
|
||||
|
||||
// input tensors
|
||||
struct ggml_tensor * inp_tokens; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
|
||||
@ -141,6 +368,81 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
||||
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
||||
|
||||
// === unified KV cache ===
|
||||
|
||||
llama_kv_cache kv_self;
|
||||
|
||||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_cnv; // [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa_cnv; // [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||||
|
||||
virtual ggml_tensor * build_inp_embd(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * tok_embd,
|
||||
const llama_ubatch & ubatch) override;
|
||||
|
||||
virtual ggml_tensor * build_inp_pos(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) override;
|
||||
|
||||
virtual ggml_tensor * build_inp_out_ids(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool worst_case) override;
|
||||
|
||||
virtual ggml_tensor * build_inp_mean(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) override;
|
||||
|
||||
virtual ggml_tensor * build_inp_cls(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens) override;
|
||||
|
||||
virtual void build_attn_inp(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool causal,
|
||||
bool swa,
|
||||
bool worst_case) override;
|
||||
|
||||
virtual void build_attn_kv_store(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
int32_t n_tokens,
|
||||
int64_t il,
|
||||
bool worst_case) override;
|
||||
|
||||
virtual ggml_tensor * build_attn_qkv(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur,
|
||||
int32_t n_tokens,
|
||||
float kq_scale,
|
||||
int il,
|
||||
bool worst_case) override;
|
||||
|
||||
virtual ggml_tensor * build_soft_max_ext(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * kq,
|
||||
float kq_scale) override;
|
||||
|
||||
virtual ggml_tensor * get_rope_factors(int il) override;
|
||||
|
||||
virtual void build_k_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph) override;
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
virtual void build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph) override;
|
||||
|
||||
// === encoder-decoder ===
|
||||
|
||||
// whether we are computing encoder output or decoder output
|
||||
@ -152,79 +454,36 @@ struct llama_context {
|
||||
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
|
||||
// === unified KV cache ===
|
||||
|
||||
llama_kv_cache kv_self;
|
||||
|
||||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_cnv; // [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa_cnv; // [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||||
|
||||
// return true if need to reserve new worst-case graph
|
||||
void kv_self_update();
|
||||
|
||||
void build_attn_inp(
|
||||
virtual ggml_tensor * build_inp_embd_enc(
|
||||
ggml_context * ctx0,
|
||||
int32_t n_tokens,
|
||||
bool causal,
|
||||
bool swa,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
void build_attn_kv_store(
|
||||
virtual ggml_tensor * build_inp_KQ_mask_cross(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * k_cur,
|
||||
ggml_tensor * v_cur,
|
||||
int32_t n_tokens,
|
||||
int64_t il,
|
||||
bool worst_case);
|
||||
|
||||
ggml_tensor * build_attn_qkv(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * wo,
|
||||
ggml_tensor * wo_b,
|
||||
ggml_tensor * q_cur,
|
||||
int32_t n_tokens,
|
||||
float kq_scale,
|
||||
int il,
|
||||
bool worst_case);
|
||||
|
||||
ggml_tensor * build_soft_max_ext(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * kq,
|
||||
float kq_scale);
|
||||
|
||||
ggml_tensor * get_rope_factors(int il);
|
||||
|
||||
void build_k_shift(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph);
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
void build_defrag(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph);
|
||||
bool worst_case) override;
|
||||
|
||||
// === recurrent ===
|
||||
|
||||
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
||||
|
||||
// TODO: add recurrent cache
|
||||
// TODO: add mamba-specific llama_context
|
||||
|
||||
// TODO: change these to build_mamba_inp and hide `state_copy` and `state_mask` inside the llama_context impl
|
||||
ggml_tensor * build_inp_s_copy(
|
||||
virtual ggml_tensor * build_inp_s_copy(
|
||||
ggml_context * ctx0,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_inp_s_mask(
|
||||
virtual ggml_tensor * build_inp_s_mask(
|
||||
ggml_context * ctx0,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_copy_mask_state(
|
||||
virtual ggml_tensor * build_copy_mask_state(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * s,
|
||||
@ -233,9 +492,9 @@ struct llama_context {
|
||||
int32_t n_tokens,
|
||||
int32_t n_state,
|
||||
int32_t n_seqs,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_mamba_layer(
|
||||
virtual ggml_tensor * build_mamba_layer(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * cur,
|
||||
@ -243,25 +502,25 @@ struct llama_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_rwkv_token_shift_load(
|
||||
virtual ggml_tensor * build_rwkv_token_shift_load(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * state_copy,
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_rwkv_token_shift_store(
|
||||
virtual ggml_tensor * build_rwkv_token_shift_store(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
ggml_tensor * build_rwkv6_time_mix(
|
||||
virtual ggml_tensor * build_rwkv6_time_mix(
|
||||
ggml_context * ctx0,
|
||||
ggml_cgraph * graph,
|
||||
ggml_tensor * cur,
|
||||
@ -270,17 +529,48 @@ struct llama_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il,
|
||||
bool worst_case);
|
||||
bool worst_case) override;
|
||||
|
||||
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
||||
// state save/load
|
||||
|
||||
// === vision ===
|
||||
virtual size_t state_get_size() override;
|
||||
virtual size_t state_get_data( uint8_t * dst, size_t size) override;
|
||||
virtual size_t state_set_data(const uint8_t * src, size_t size) override;
|
||||
|
||||
// TODO: find a better way to accommodate mutli-dimension position encoding methods
|
||||
// number of position id each token get, 1 for each token in most cases.
|
||||
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
|
||||
int n_pos_per_token = 1;
|
||||
virtual size_t state_seq_get_size(llama_seq_id seq_id) override;
|
||||
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) override;
|
||||
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) override;
|
||||
|
||||
virtual bool state_load_file(
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) override;
|
||||
|
||||
virtual bool state_save_file(
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) override;
|
||||
|
||||
virtual size_t state_seq_load_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out) override;
|
||||
|
||||
virtual size_t state_seq_save_file(
|
||||
llama_seq_id seq_id,
|
||||
const char * filepath,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count) override;
|
||||
|
||||
private:
|
||||
size_t state_get_data(struct llama_data_write & data_ctx);
|
||||
size_t state_set_data(struct llama_data_read & data_ctx);
|
||||
|
||||
size_t state_seq_get_data(struct llama_data_write & data_ctx, llama_seq_id seq_id);
|
||||
size_t state_seq_set_data(struct llama_data_read & data_ctx, llama_seq_id seq_id);
|
||||
};
|
||||
|
||||
// For internal test use
|
||||
|
240
src/llama.cpp
240
src/llama.cpp
@ -8,7 +8,6 @@
|
||||
#include "llama-model.h"
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
@ -86,8 +85,6 @@ struct llm_build_context {
|
||||
const float norm_rms_eps;
|
||||
|
||||
const int32_t n_tokens;
|
||||
const int32_t n_outputs;
|
||||
const int32_t n_outputs_enc;
|
||||
const int32_t n_ctx_orig;
|
||||
|
||||
const bool worst_case;
|
||||
@ -98,9 +95,8 @@ struct llm_build_context {
|
||||
|
||||
const llm_build_cb & cb;
|
||||
|
||||
std::vector<uint8_t> & buf_compute_meta;
|
||||
|
||||
struct ggml_context * ctx0 = nullptr;
|
||||
const ggml_context_ptr ctx = nullptr;
|
||||
ggml_context * ctx0 = nullptr;
|
||||
|
||||
// TODO: consider making the entire interface noexcept
|
||||
llm_build_context(
|
||||
@ -136,132 +132,37 @@ struct llm_build_context {
|
||||
norm_eps (hparams.f_norm_eps),
|
||||
norm_rms_eps (hparams.f_norm_rms_eps),
|
||||
n_tokens (ubatch.n_tokens),
|
||||
n_outputs (worst_case ? n_tokens : lctx.n_outputs),
|
||||
n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
|
||||
n_ctx_orig (cparams.n_ctx_orig_yarn),
|
||||
worst_case (worst_case),
|
||||
flash_attn (cparams.flash_attn),
|
||||
pooling_type (cparams.pooling_type),
|
||||
rope_type (hparams.rope_type),
|
||||
cb (cb),
|
||||
buf_compute_meta (lctx.buf_compute_meta) {
|
||||
// all initializations should be done in init()
|
||||
ctx (lctx.init()),
|
||||
ctx0 (ctx.get()) {
|
||||
}
|
||||
|
||||
void init() {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_compute_meta.size(),
|
||||
/*.mem_buffer =*/ buf_compute_meta.data(),
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ctx0 = ggml_init(params);
|
||||
|
||||
lctx.reset();
|
||||
}
|
||||
|
||||
void free() {
|
||||
ggml_free(ctx0);
|
||||
ctx0 = nullptr;
|
||||
}
|
||||
|
||||
// TODO: tmp
|
||||
struct ggml_tensor * build_inp_embd(struct ggml_tensor * tok_embd) {
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
if (ubatch.token) {
|
||||
lctx.inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
||||
cb(lctx.inp_tokens, "inp_tokens", -1);
|
||||
ggml_set_input(lctx.inp_tokens);
|
||||
|
||||
inpL = ggml_get_rows(ctx0, tok_embd, lctx.inp_tokens);
|
||||
|
||||
// apply lora for embedding tokens if needed
|
||||
for (const auto & lora : loras) {
|
||||
struct llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
|
||||
if (lw == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float adapter_scale = lora.second;
|
||||
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
||||
|
||||
struct ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
|
||||
ctx0, lw->b, // non-transposed lora_b
|
||||
ggml_get_rows(ctx0, lw->a, lctx.inp_tokens)
|
||||
), scale);
|
||||
|
||||
inpL = ggml_add(ctx0, inpL, inpL_delta);
|
||||
}
|
||||
} else {
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
ggml_set_input(lctx.inp_embd);
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_embedding_scale != 0.0f) {
|
||||
inpL = ggml_scale(ctx0, inpL, hparams.f_embedding_scale);
|
||||
}
|
||||
|
||||
struct ggml_tensor * inpL = lctx.build_inp_embd(ctx0, tok_embd, ubatch);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
return inpL;
|
||||
}
|
||||
|
||||
// do mat_mul, while optionally apply lora
|
||||
// TODO: tmp
|
||||
struct ggml_tensor * build_lora_mm(
|
||||
struct ggml_tensor * w,
|
||||
struct ggml_tensor * cur) {
|
||||
struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
|
||||
|
||||
for (const auto & lora : loras) {
|
||||
struct llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
||||
if (lw == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float adapter_scale = lora.second;
|
||||
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
||||
|
||||
struct ggml_tensor * ab_cur = ggml_mul_mat(
|
||||
ctx0, lw->b,
|
||||
ggml_mul_mat(ctx0, lw->a, cur)
|
||||
);
|
||||
|
||||
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
||||
res = ggml_add(ctx0, res, ab_cur);
|
||||
}
|
||||
|
||||
return res;
|
||||
return lctx.build_lora_mm(ctx0, w, cur);
|
||||
}
|
||||
|
||||
// do mat_mul_id, while optionally apply lora
|
||||
// TODO: tmp
|
||||
struct ggml_tensor * build_lora_mm_id(
|
||||
struct ggml_tensor * w, // struct ggml_tensor * as
|
||||
struct ggml_tensor * cur, // struct ggml_tensor * b
|
||||
struct ggml_tensor * ids) {
|
||||
struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
|
||||
for (const auto & lora : loras) {
|
||||
struct llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
||||
if (lw == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float alpha = lora.first->alpha;
|
||||
const float rank = (float) lw->b->ne[0];
|
||||
const float scale = alpha ? lora.second * alpha / rank : lora.second;
|
||||
|
||||
struct ggml_tensor * ab_cur = ggml_mul_mat_id(
|
||||
ctx0, lw->b,
|
||||
ggml_mul_mat_id(ctx0, lw->a, cur, ids),
|
||||
ids
|
||||
);
|
||||
|
||||
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
||||
res = ggml_add(ctx0, res, ab_cur);
|
||||
}
|
||||
|
||||
return res;
|
||||
return lctx.build_lora_mm_id(ctx0, w, cur, ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_norm(
|
||||
@ -620,31 +521,31 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_pos() {
|
||||
lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(lctx.inp_pos, "inp_pos", -1);
|
||||
ggml_set_input(lctx.inp_pos);
|
||||
return lctx.inp_pos;
|
||||
ggml_tensor * cur = lctx.build_inp_pos(ctx0, n_tokens);
|
||||
cb(cur, "inp_pos", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_out_ids() {
|
||||
lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
|
||||
cb(lctx.inp_out_ids, "inp_out_ids", -1);
|
||||
ggml_set_input(lctx.inp_out_ids);
|
||||
return lctx.inp_out_ids;
|
||||
ggml_tensor * cur = lctx.build_inp_out_ids(ctx0, n_tokens, worst_case);
|
||||
cb(cur, "inp_out_ids", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_mean() {
|
||||
lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
cb(lctx.inp_mean, "inp_mean", -1);
|
||||
ggml_set_input(lctx.inp_mean);
|
||||
return lctx.inp_mean;
|
||||
ggml_tensor * cur = lctx.build_inp_mean(ctx0, n_tokens);
|
||||
cb(cur, "inp_mean", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_cls() {
|
||||
lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(lctx.inp_cls, "inp_cls", -1);
|
||||
ggml_set_input(lctx.inp_cls);
|
||||
return lctx.inp_cls;
|
||||
ggml_tensor * cur = lctx.build_inp_cls(ctx0, n_tokens);
|
||||
cb(cur, "inp_cls", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
|
||||
@ -745,26 +646,22 @@ struct llm_build_context {
|
||||
//}
|
||||
|
||||
struct ggml_tensor * build_inp_embd_enc() {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
|
||||
ggml_set_input(lctx.inp_embd_enc);
|
||||
cb(lctx.inp_embd_enc, "embd_enc", -1);
|
||||
return lctx.inp_embd_enc;
|
||||
ggml_tensor * cur = lctx.build_inp_embd_enc(ctx0, n_tokens, worst_case);
|
||||
cb(cur, "embd_enc", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_tensor * build_inp_KQ_mask_cross() {
|
||||
lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||
ggml_set_input(lctx.inp_KQ_mask_cross);
|
||||
cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
|
||||
return lctx.inp_KQ_mask_cross;
|
||||
ggml_tensor * cur = lctx.build_inp_KQ_mask_cross(ctx0, n_tokens, worst_case);
|
||||
cb(cur, "KQ_mask_cross", -1);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -838,7 +735,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -927,9 +823,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_deci() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -1014,7 +907,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -1422,9 +1314,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_grok() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -1498,7 +1387,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -1580,9 +1468,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_dbrx() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
@ -1649,7 +1534,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -2716,10 +2600,7 @@ struct llm_build_context {
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens * 4);
|
||||
cb(lctx.inp_pos, "inp_pos", -1);
|
||||
ggml_set_input(lctx.inp_pos);
|
||||
struct ggml_tensor * inp_pos = lctx.inp_pos;
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
lctx.build_attn_inp(ctx0, n_tokens, true, false, worst_case);
|
||||
|
||||
@ -2825,9 +2706,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_qwen2moe() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -2891,7 +2769,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -4685,9 +4562,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_olmo() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -4757,7 +4631,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -4808,9 +4681,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_olmo2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -4880,7 +4750,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -4935,9 +4804,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_olmoe() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -5006,7 +4872,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -5325,9 +5190,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_arctic() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -5385,7 +5247,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -5458,9 +5319,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_deepseek() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -5535,7 +5393,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -5616,9 +5473,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_deepseek2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
bool is_lite = (hparams.n_layer == 27);
|
||||
|
||||
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
|
||||
@ -5767,7 +5621,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -5996,9 +5849,6 @@ struct llm_build_context {
|
||||
//struct ggml_cgraph * build_t5_enc() {
|
||||
// struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
// int32_t n_tokens = this->n_tokens;
|
||||
|
||||
// const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
// const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
// GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
@ -6072,7 +5922,6 @@ struct llm_build_context {
|
||||
// if (il == n_layer - 1) {
|
||||
// // skip computing output for unused tokens
|
||||
// struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
// n_tokens = n_outputs;
|
||||
// cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
// inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
// }
|
||||
@ -6128,9 +5977,6 @@ struct llm_build_context {
|
||||
//struct ggml_cgraph * build_t5_dec() {
|
||||
// struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// // mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
// int32_t n_tokens = this->n_tokens;
|
||||
|
||||
// const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
// const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
// GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
@ -6272,7 +6118,6 @@ struct llm_build_context {
|
||||
// if (il == n_layer - 1) {
|
||||
// // skip computing output for unused tokens
|
||||
// struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
// n_tokens = n_outputs;
|
||||
// cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
// inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
// inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
||||
@ -6673,9 +6518,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_exaone() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -6748,7 +6590,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -6978,9 +6819,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_chameleon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
@ -7076,7 +6914,6 @@ struct llm_build_context {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
@ -7341,8 +7178,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
struct llm_build_context llm(lctx, ubatch, cb, worst_case);
|
||||
|
||||
llm.init();
|
||||
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_MINICPM:
|
||||
@ -7403,7 +7238,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
{
|
||||
lctx.n_pos_per_token = 4;
|
||||
result = llm.build_qwen2vl();
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
@ -7564,8 +7398,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
result = llm.append_pooling(result);
|
||||
}
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -7908,7 +7740,7 @@ struct llama_context * llama_init_from_model(
|
||||
|
||||
try {
|
||||
// TODO: add logic which llama_context implementation to construct
|
||||
ctx = new llama_context(*model, params,
|
||||
ctx = new llama_context_unified(*model, params,
|
||||
[](llama_context & lctx, const llama_ubatch & ubatch, bool worst_case) {
|
||||
return llama_build_graph(lctx, ubatch, worst_case);
|
||||
});
|
||||
|
Reference in New Issue
Block a user