Files
llama.cpp/src/llama-context.h
Georgi Gerganov 02ef4be975 context : initial abstraction
ggml-ci
2025-02-11 22:27:21 +02:00

579 lines
19 KiB
C++

#pragma once
#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include <map>
#include <unordered_map>
#include <vector>
#include <set>
using llama_loras = std::unordered_map<struct llama_adapter_lora *, float>;
struct llama_context {
llama_context(const llama_model & model);
virtual ~llama_context();
virtual void synchronize();
virtual uint32_t n_ctx() const = 0;
virtual uint32_t n_batch() const = 0;
virtual uint32_t n_ubatch() const = 0;
virtual uint32_t n_seq_max() const = 0;
virtual llama_kv_cache * get_kv_self() = 0;
virtual const llama_kv_cache * get_kv_self() const = 0;
virtual void kv_self_update() = 0;
virtual enum llama_pooling_type pooling_type() const = 0;
virtual float * get_logits() = 0;
virtual float * get_logits_ith(int32_t i) = 0;
virtual float * get_embeddings() = 0;
virtual float * get_embeddings_ith(int32_t i) = 0;
virtual float * get_embeddings_seq(llama_seq_id seq_id) = 0;
int64_t n_pos_per_token() const; // vision
virtual ggml_context_ptr init();
virtual int decode(llama_batch & inp_batch) = 0;
virtual int encode(llama_batch & inp_batch) = 0;
// graph build API (generic)
// do mat_mul, while optionally apply lora
virtual ggml_tensor * build_lora_mm(
ggml_context * ctx0,
ggml_tensor * w,
ggml_tensor * cur);
// do mat_mul_id, while optionally apply lora
virtual ggml_tensor * build_lora_mm_id(
ggml_context * ctx0,
ggml_tensor * w, // struct ggml_tensor * as
ggml_tensor * cur, // struct ggml_tensor * b
ggml_tensor * ids);
// graph build API (context-specific)
virtual ggml_tensor * build_inp_embd(
ggml_context * ctx0,
ggml_tensor * tok_embd,
const llama_ubatch & ubatch) = 0;
virtual ggml_tensor * build_inp_pos(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_out_ids(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_mean(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual ggml_tensor * build_inp_cls(
ggml_context * ctx0,
int32_t n_tokens) = 0;
virtual void build_attn_inp(
ggml_context * ctx0,
int32_t n_tokens,
bool causal,
bool swa,
bool worst_case) = 0;
virtual void build_attn_kv_store(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
int32_t n_tokens,
int64_t il,
bool worst_case) = 0;
virtual ggml_tensor * build_attn_qkv(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
int32_t n_tokens,
float kq_scale,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_soft_max_ext(
ggml_context * ctx0,
ggml_tensor * kq,
float kq_scale) = 0;
virtual ggml_tensor * get_rope_factors(int il) = 0;
virtual void build_k_shift(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
virtual void build_defrag(
ggml_context * ctx0,
ggml_cgraph * graph) = 0;
virtual ggml_tensor * build_inp_embd_enc(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_KQ_mask_cross(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_copy(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_inp_s_mask(
ggml_context * ctx0,
bool worst_case) = 0;
virtual ggml_tensor * build_copy_mask_state(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_tokens,
int32_t n_state,
int32_t n_seqs,
bool worst_case) = 0;
virtual ggml_tensor * build_mamba_layer(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_load(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv_token_shift_store(
ggml_context * ctx0,
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
virtual ggml_tensor * build_rwkv6_time_mix(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) = 0;
// state save/load
virtual size_t state_get_size() = 0;
virtual size_t state_get_data( uint8_t * dst, size_t size) = 0;
virtual size_t state_set_data(const uint8_t * src, size_t size) = 0;
virtual size_t state_seq_get_size(llama_seq_id seq_id) = 0;
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) = 0;
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) = 0;
virtual bool state_load_file(
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out) = 0;
virtual bool state_save_file(
const char * filepath,
const llama_token * tokens,
size_t n_token_count) = 0;
virtual size_t state_seq_load_file(
llama_seq_id seq_id,
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out) = 0;
virtual size_t state_seq_save_file(
llama_seq_id seq_id,
const char * filepath,
const llama_token * tokens,
size_t n_token_count) = 0;
// members
const llama_model & model;
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_loras loras;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_sched_ptr sched;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
// perf
bool has_evaluated_once = false;
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
};
// TODO: make implementation details private
struct llama_context_unified : public llama_context {
struct batch_manager;
// TODO: tmp until llama-model starts implementing the graph build function
typedef std::function<ggml_cgraph *(llama_context &, const llama_ubatch &, bool worst_case)> build_graph_callback;
llama_context_unified(
const llama_model & model,
const llama_context_params & params,
build_graph_callback && cb_build_graph);
virtual ~llama_context_unified();
virtual uint32_t n_ctx() const override;
virtual uint32_t n_batch() const override;
virtual uint32_t n_ubatch() const override;
virtual uint32_t n_seq_max() const override;
virtual llama_kv_cache * get_kv_self() override;
virtual const llama_kv_cache * get_kv_self() const override;
virtual void kv_self_update() override;
virtual enum llama_pooling_type pooling_type() const override;
virtual float * get_logits() override;
virtual float * get_logits_ith(int32_t i) override;
virtual float * get_embeddings() override;
virtual float * get_embeddings_ith(int32_t i) override;
virtual float * get_embeddings_seq(llama_seq_id seq_id) override;
virtual ggml_context_ptr init() override;
virtual int decode(llama_batch & inp_batch) override;
virtual int encode(llama_batch & inp_batch) override;
llama_sbatch sbatch;
build_graph_callback cb_build_graph;
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
bool logits_all = false;
bool need_reserve = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
virtual std::unique_ptr<batch_manager> prepare_batch(const llama_batch & batch);
// returns the result of ggml_backend_sched_graph_compute_async execution
enum ggml_status compute_graph(
ggml_cgraph * graph,
bool batched);
// max token position across all sequences in the current context
llama_pos pos_max() const;
// certain implementations could require a padding for the context size
uint32_t get_ctx_padding(const llama_cparams & cparams) const;
void prepare_k_shift();
void prepare_defrag();
void set_inputs(const llama_ubatch & ubatch);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void reorder_outputs();
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
size_t reserve_outputs(size_t n_outputs);
// input tensors
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
// === unified KV cache ===
llama_kv_cache kv_self;
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_cnv; // [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa_cnv; // [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
virtual ggml_tensor * build_inp_embd(
ggml_context * ctx0,
ggml_tensor * tok_embd,
const llama_ubatch & ubatch) override;
virtual ggml_tensor * build_inp_pos(
ggml_context * ctx0,
int32_t n_tokens) override;
virtual ggml_tensor * build_inp_out_ids(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) override;
virtual ggml_tensor * build_inp_mean(
ggml_context * ctx0,
int32_t n_tokens) override;
virtual ggml_tensor * build_inp_cls(
ggml_context * ctx0,
int32_t n_tokens) override;
virtual void build_attn_inp(
ggml_context * ctx0,
int32_t n_tokens,
bool causal,
bool swa,
bool worst_case) override;
virtual void build_attn_kv_store(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
int32_t n_tokens,
int64_t il,
bool worst_case) override;
virtual ggml_tensor * build_attn_qkv(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
int32_t n_tokens,
float kq_scale,
int il,
bool worst_case) override;
virtual ggml_tensor * build_soft_max_ext(
ggml_context * ctx0,
ggml_tensor * kq,
float kq_scale) override;
virtual ggml_tensor * get_rope_factors(int il) override;
virtual void build_k_shift(
ggml_context * ctx0,
ggml_cgraph * graph) override;
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
virtual void build_defrag(
ggml_context * ctx0,
ggml_cgraph * graph) override;
// === encoder-decoder ===
// whether we are computing encoder output or decoder output
bool is_encoding = false;
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
virtual ggml_tensor * build_inp_embd_enc(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) override;
virtual ggml_tensor * build_inp_KQ_mask_cross(
ggml_context * ctx0,
int32_t n_tokens,
bool worst_case) override;
// === recurrent ===
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
// TODO: add recurrent cache
// TODO: add mamba-specific llama_context
// TODO: change these to build_mamba_inp and hide `state_copy` and `state_mask` inside the llama_context impl
virtual ggml_tensor * build_inp_s_copy(
ggml_context * ctx0,
bool worst_case) override;
virtual ggml_tensor * build_inp_s_mask(
ggml_context * ctx0,
bool worst_case) override;
virtual ggml_tensor * build_copy_mask_state(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_tokens,
int32_t n_state,
int32_t n_seqs,
bool worst_case) override;
virtual ggml_tensor * build_mamba_layer(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) override;
virtual ggml_tensor * build_rwkv_token_shift_load(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) override;
virtual ggml_tensor * build_rwkv_token_shift_store(
ggml_context * ctx0,
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il,
bool worst_case) override;
virtual ggml_tensor * build_rwkv6_time_mix(
ggml_context * ctx0,
ggml_cgraph * graph,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il,
bool worst_case) override;
// state save/load
virtual size_t state_get_size() override;
virtual size_t state_get_data( uint8_t * dst, size_t size) override;
virtual size_t state_set_data(const uint8_t * src, size_t size) override;
virtual size_t state_seq_get_size(llama_seq_id seq_id) override;
virtual size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) override;
virtual size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) override;
virtual bool state_load_file(
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out) override;
virtual bool state_save_file(
const char * filepath,
const llama_token * tokens,
size_t n_token_count) override;
virtual size_t state_seq_load_file(
llama_seq_id seq_id,
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out) override;
virtual size_t state_seq_save_file(
llama_seq_id seq_id,
const char * filepath,
const llama_token * tokens,
size_t n_token_count) override;
private:
size_t state_get_data(struct llama_data_write & data_ctx);
size_t state_set_data(struct llama_data_read & data_ctx);
size_t state_seq_get_data(struct llama_data_write & data_ctx, llama_seq_id seq_id);
size_t state_seq_set_data(struct llama_data_read & data_ctx, llama_seq_id seq_id);
};
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);