Files
llama.cpp/src/llama-graph.cpp

1679 lines
55 KiB
C++
Raw Normal View History

#include "llama-graph.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-kv-cache-unified.h"
#include "llama-kv-cache-unified-iswa.h"
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
#include "llama-memory-hybrid.h"
#include "llama-memory-recurrent.h"
#include <cassert>
#include <cmath>
#include <cstring>
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
if (ubatch->token) {
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
}
if (ubatch->embd) {
const int64_t n_embd = embd->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
}
}
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && pos) {
const int64_t n_tokens = ubatch->n_tokens;
if (ubatch->token && n_pos_per_embd == 4) {
// in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
// the 3 first dims are the same, and 4th dim is all 0
std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
// copy the first dimension
for (int i = 0; i < n_tokens; ++i) {
pos_data[ i] = ubatch->pos[i];
pos_data[ n_tokens + i] = ubatch->pos[i];
pos_data[2 * n_tokens + i] = ubatch->pos[i];
pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
}
ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
} else {
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
}
}
}
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && attn_scale) {
const int64_t n_tokens = ubatch->n_tokens;
std::vector<float> attn_scale_data(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
attn_scale_data[i] = std::log(
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
) * f_attn_temp_scale + 1.0;
}
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
}
}
void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
if (pos_bucket) {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) pos_bucket->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
}
}
}
}
}
void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
if (pos_bucket) {
mctx->set_input_pos_bucket(pos_bucket, ubatch);
}
}
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
GGML_ASSERT(out_ids);
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
int32_t * data = (int32_t *) out_ids->data;
if (n_outputs == n_tokens) {
for (int i = 0; i < n_tokens; ++i) {
data[i] = i;
}
return;
}
GGML_ASSERT(ubatch->output);
int n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
if (ubatch->output[i]) {
data[n_outputs++] = i;
}
}
}
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
GGML_ASSERT(mean);
GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
float * data = (float *) mean->data;
memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
std::vector<uint64_t> sums(n_seqs_unq, 0);
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
sums[seq_idx] += ubatch->n_seq_tokens;
}
}
std::vector<float> div(n_seqs_unq, 0.0f);
for (int s = 0; s < n_seqs_unq; ++s) {
const uint64_t sum = sums[s];
if (sum > 0) {
div[s] = 1.0f/float(sum);
}
}
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
for (int j = 0; j < n_seq_tokens; ++j) {
data[seq_idx*n_tokens + i + j] = div[seq_idx];
}
}
}
}
}
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
)) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
data[seq_idx] = i;
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
std::vector<int> last_pos(n_seqs_unq, -1);
std::vector<int> last_row(n_seqs_unq, -1);
for (int i = 0; i < n_tokens; ++i) {
const llama_pos pos = ubatch->pos[i];
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
const int32_t seq_idx = ubatch->seq_idx[seq_id];
if (pos >= last_pos[seq_idx]) {
last_pos[seq_idx] = pos;
last_row[seq_idx] = i;
}
}
}
for (int s = 0; s < n_seqs_unq; ++s) {
if (last_row[s] >= 0) {
data[s] = last_row[s];
}
}
}
}
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
const int64_t n_rs = mctx->get_n_rs();
if (s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
int32_t * data = (int32_t *) s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
for (uint32_t i = 0; i < n_rs; ++i) {
data[i] = mctx->s_copy(i);
}
}
}
void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (cross_embd && !cross->v_embd.empty()) {
assert(cross_embd->type == GGML_TYPE_F32);
ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
}
}
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
const int64_t n_kv = ubatch->n_tokens;
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(kq_mask);
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
float * data = (float *) kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
for (int i0 = 0; i0 < n_tokens; ++i0) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
const llama_seq_id s0 = ubatch->seq_id[i0][0];
// TODO: reimplement this like in llama_kv_cache_unified
if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
}
}
}
}
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
if (self_kq_mask) {
mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
}
void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
if (self_kq_mask) {
mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
if (self_kq_mask_swa) {
mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
}
}
void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
GGML_ASSERT(cross_kq_mask);
const int64_t n_enc = cross_kq_mask->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
float * data = (float *) cross_kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_enc; ++j) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
f = 0.0f;
}
}
data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_enc; ++j) {
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
}
}
}
}
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
if (self_kq_mask) {
mctx->get_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
}
const int64_t n_rs = mctx->get_recr()->get_n_rs();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
if (s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
int32_t * data = (int32_t *) s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_rs; ++i) {
data[i] = mctx->get_recr()->s_copy(i);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
}
}
}
//
// llm_graph_context
//
llm_graph_context::llm_graph_context(const llm_graph_params & params) :
arch (params.arch),
hparams (params.hparams),
cparams (params.cparams),
ubatch (params.ubatch),
n_embd (hparams.n_embd),
n_layer (hparams.n_layer),
n_rot (hparams.n_rot),
n_ctx (cparams.n_ctx),
n_head (hparams.n_head()),
n_head_kv (hparams.n_head_kv()),
n_embd_head_k (hparams.n_embd_head_k),
n_embd_k_gqa (hparams.n_embd_k_gqa()),
n_embd_head_v (hparams.n_embd_head_v),
n_embd_v_gqa (hparams.n_embd_v_gqa()),
n_expert (hparams.n_expert),
n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
freq_base (cparams.rope_freq_base),
freq_scale (cparams.rope_freq_scale),
ext_factor (cparams.yarn_ext_factor),
attn_factor (cparams.yarn_attn_factor),
beta_fast (cparams.yarn_beta_fast),
beta_slow (cparams.yarn_beta_slow),
norm_eps (hparams.f_norm_eps),
norm_rms_eps (hparams.f_norm_rms_eps),
n_tokens (ubatch.n_tokens),
n_outputs (params.n_outputs),
n_ctx_orig (cparams.n_ctx_orig_yarn),
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
ctx0 (params.ctx),
sched (params.sched),
backend_cpu (params.backend_cpu),
cvec (params.cvec),
loras (params.loras),
mctx (params.mctx),
cross (params.cross),
cb_func (params.cb),
res (std::make_unique<llm_graph_result>()) {
}
void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
if (cb_func) {
cb_func(ubatch, cur, name, il);
}
}
ggml_tensor * llm_graph_context::build_cvec(
ggml_tensor * cur,
int il) const {
return cvec->apply_to(ctx0, cur, il);
}
ggml_tensor * llm_graph_context::build_lora_mm(
ggml_tensor * w,
ggml_tensor * cur) const {
ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
if (lw == nullptr) {
continue;
}
const float adapter_scale = lora.second;
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
ggml_tensor * ab_cur = ggml_mul_mat(
ctx0, lw->b,
ggml_mul_mat(ctx0, lw->a, cur)
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
ggml_tensor * llm_graph_context::build_lora_mm_id(
ggml_tensor * w, // ggml_tensor * as
ggml_tensor * cur, // ggml_tensor * b
ggml_tensor * ids) const {
ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
if (lw == nullptr) {
continue;
}
const float alpha = lora.first->alpha;
const float rank = (float) lw->b->ne[0];
const float scale = alpha ? lora.second * alpha / rank : lora.second;
ggml_tensor * ab_cur = ggml_mul_mat_id(
ctx0, lw->b,
ggml_mul_mat_id(ctx0, lw->a, cur, ids),
ids
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
ggml_tensor * llm_graph_context::build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
llm_norm_type type,
int il) const {
switch (type) {
case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
case LLM_NORM_GROUP:
{
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
} break;
}
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx0, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
}
if (mb) {
cur = ggml_add(ctx0, cur, mb);
}
return cur;
}
ggml_tensor * llm_graph_context::build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * up_s,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * gate_s,
ggml_tensor * down,
ggml_tensor * down_b,
ggml_tensor * down_s,
ggml_tensor * act_scales,
llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate,
int il) const {
ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
tmp = ggml_add(ctx0, tmp, up_b);
cb(tmp, "ffn_up_b", il);
}
if (up_s) {
tmp = ggml_mul(ctx0, tmp, up_s);
cb(tmp, "ffn_up_s", il);
}
if (gate) {
switch (type_gate) {
case LLM_FFN_SEQ:
{
cur = build_lora_mm(gate, tmp);
cb(cur, "ffn_gate", il);
} break;
case LLM_FFN_PAR:
{
cur = build_lora_mm(gate, cur);
cb(cur, "ffn_gate", il);
} break;
}
if (gate_b) {
cur = ggml_add(ctx0, cur, gate_b);
cb(cur, "ffn_gate_b", il);
}
if (gate_s) {
cur = ggml_mul(ctx0, cur, gate_s);
cb(cur, "ffn_gate_s", il);
}
} else {
cur = tmp;
}
switch (type_op) {
case LLM_FFN_SILU:
{
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case LLM_FFN_GELU:
{
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
if (act_scales != NULL) {
cur = ggml_div(ctx0, cur, act_scales);
cb(cur, "ffn_act", il);
}
} break;
case LLM_FFN_RELU:
{
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_relu", il);
} break;
case LLM_FFN_RELU_SQR:
{
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_relu", il);
cur = ggml_sqr(ctx0, cur);
cb(cur, "ffn_sqr(relu)", il);
} break;
case LLM_FFN_SWIGLU:
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_silu(ctx0, x0);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_mul", il);
} break;
case LLM_FFN_GEGLU:
{
// Split into two equal parts
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217
2025-06-09 17:17:31 +03:00
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_gelu(ctx0, x0);
cb(x0, "ffn_gelu", il);
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_geglu", il);
} break;
}
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
if (down) {
cur = build_lora_mm(down, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (down_b) {
cb(cur, "ffn_down", il);
}
if (down_b) {
cur = ggml_add(ctx0, cur, down_b);
}
if (down_s) {
cur = ggml_mul(ctx0, cur, down_s);
cb(cur, "ffn_down_s", il);
}
return cur;
}
ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * cur,
ggml_tensor * gate_inp,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
llama_expert_gating_func_type gating_op,
int il) const {
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
ggml_tensor * probs = nullptr;
switch (gating_op) {
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
{
probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
} break;
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
{
probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
} break;
default:
GGML_ABORT("fatal error");
}
cb(probs, "ffn_moe_probs", il);
// add experts selection bias - introduced in DeepSeek V3
// leave probs unbiased as it's later used to get expert weights
ggml_tensor * selection_probs = probs;
if (exp_probs_b != nullptr) {
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
cb(selection_probs, "ffn_moe_probs_biased", il);
}
// llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
// see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
if (arch == LLM_ARCH_LLAMA4) {
selection_probs = logits;
}
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
ggml_tensor * weights = ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights", il);
if (norm_w) {
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
}
if (scale_w) {
weights = ggml_scale(ctx0, weights, w_scale);
cb(weights, "ffn_moe_weights_scaled", il);
}
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
if (weight_before_ffn) {
// repeat cur to [n_embd, n_expert_used, n_tokens]
ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
cur = ggml_mul(ctx0, repeated, weights);
cb(cur, "ffn_moe_weighted", il);
}
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * experts = nullptr;
if (gate_exps) {
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate", il);
} else {
cur = up;
}
switch (type_op) {
case LLM_FFN_SILU:
{
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il);
} break;
default:
GGML_ABORT("fatal error");
}
if (gate_exps) {
cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate_par", il);
}
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
if (!weight_before_ffn) {
experts = ggml_mul(ctx0, experts, weights);
cb(cur, "ffn_moe_weighted", il);
}
// aggregate experts
ggml_tensor * moe_out = nullptr;
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
experts->nb[2], i*experts->nb[1]);
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx0, moe_out, cur_expert);
}
}
if (n_expert_used == 1) {
// avoid returning a non-contiguous tensor
moe_out = ggml_cont(ctx0, moe_out);
}
cb(moe_out, "ffn_moe_out", il);
return moe_out;
}
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * cur = nullptr;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
// apply lora for embedding tokens if needed
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
if (lw == nullptr) {
continue;
}
const float adapter_scale = lora.second;
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
ctx0, lw->b, // non-transposed lora_b
ggml_get_rows(ctx0, lw->a, inp->tokens)
), scale);
cur = ggml_add(ctx0, cur, inpL_delta);
}
} else {
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
ggml_set_input(inp->embd);
cur = inp->embd;
}
// For Granite architecture
if (hparams.f_embedding_scale != 0.0f) {
cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
}
cb(cur, "inp_embd", -1);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
auto & cur = inp->pos;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto & cur = inp->attn_scale;
// this need to be 1x1xN for broadcasting
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_out_ids() const {
// note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
// but this would make the graph topology depend on the number of output tokens, which can interere with
// features that require constant topology such as pipline parallelism
// ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
//if (n_outputs < n_tokens) {
// return nullptr;
//}
auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
auto & cur = inp->out_ids;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_mean() const {
auto inp = std::make_unique<llm_graph_input_mean>(cparams);
auto & cur = inp->mean;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_cls() const {
auto inp = std::make_unique<llm_graph_input_cls>(cparams);
auto & cur = inp->cls;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
auto & cur = inp->cross_embd;
// if we have the output embeddings from the encoder, use them directly
// TODO: needs more work to be correct, for now just use the tensor shape
//if (cross->t_embd) {
// cur = ggml_view_tensor(ctx0, cross->t_embd);
// return cur;
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
auto & cur = inp->pos_bucket;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
const auto n_kv = mctx_cur->get_n_kv();
auto & cur = inp->pos_bucket;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
cb(pos_bucket_1d, "pos_bucket_1d", -1);
ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
pos_bias = ggml_cont (ctx0, pos_bias);
cb(pos_bias, "pos_bias", -1);
return pos_bias;
}
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mctx_cur);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
{
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers");
const auto n_kv = inp->mctx->get_attn()->get_n_kv();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
}
{
const auto n_rs = mctx_cur->get_recr()->get_n_rs();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
ggml_set_input(inp->s_copy);
}
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn_mha(
ggml_cgraph * gf,
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla,
float kq_scale) const {
const bool v_trans = v->nb[1] > v->nb[2];
q = ggml_permute(ctx0, q, 0, 2, 1, 3);
k = ggml_permute(ctx0, k, 0, 2, 1, 3);
v = ggml_permute(ctx0, v, 0, 2, 1, 3);
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
const auto n_kv = k->ne[1];
ggml_tensor * cur;
// TODO: replace hardcoded padding with ggml-provided padding
if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
if (v_trans) {
v = ggml_transpose(ctx0, v);
}
// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
if (k->type == GGML_TYPE_F32) {
k = ggml_cast(ctx0, k, GGML_TYPE_F16);
}
if (v->type == GGML_TYPE_F32) {
v = ggml_cast(ctx0, v, GGML_TYPE_F16);
}
cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
if (v_mla) {
#if 0
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
// The permutations are noops and only change how the tensor data is interpreted.
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_mul_mat(ctx0, v_mla, cur);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
} else {
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
// note: this op tends to require high floating point range
// while for some models F16 is enough, for others it is not, so we default to F32 here
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
if (arch == LLM_ARCH_GROK) {
// need to do the following:
// multiply by attn_output_multiplyer of 0.08838834764831845
// and then :
// kq = 30 * tanh(kq / 30)
// before the softmax below
kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
kq = ggml_scale(ctx0, kq, 30);
}
if (hparams.attn_soft_cap) {
kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
kq = ggml_tanh (ctx0, kq);
kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
}
if (kq_b) {
kq = ggml_add(ctx0, kq, kq_b);
}
kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
if (!v_trans) {
// note: avoid this branch
v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
}
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
// for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
if (v_mla) {
kqv = ggml_mul_mat(ctx0, v_mla, kqv);
}
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
if (!cparams.offload_kqv) {
// all nodes between the KV store and the attention output are run on the CPU
ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
}
}
ggml_build_forward_expand(gf, cur);
return cur;
}
llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->kq_mask);
inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_no_cache * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
GGML_UNUSED(n_tokens);
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto & kq_mask = inp->get_kq_mask();
ggml_tensor * q = q_cur;
ggml_tensor * k = k_cur;
ggml_tensor * v = v_cur;
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, mctx_cur);
{
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
const auto n_kv = mctx_cur->get_n_kv();
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
}
return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_kv_unified * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
// store to KV cache
{
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
}
const auto & kq_mask = inp->get_kq_mask();
ggml_tensor * q = q_cur;
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_kv_unified_iswa * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto * mctx_iswa = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
const bool is_swa = hparams.is_swa(il);
const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
// store to KV cache
{
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
}
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
ggml_tensor * q = q_cur;
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
ggml_set_input(inp->cross_kq_mask);
inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto & kq_mask = inp->get_kq_mask_cross();
ggml_tensor * q = q_cur;
ggml_tensor * k = k_cur;
ggml_tensor * v = v_cur;
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_mem_hybrid * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_attn();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
// store to KV cache
{
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
}
const auto & kq_mask = inp->get_kq_mask();
ggml_tensor * q = q_cur;
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, mctx_cur);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
{
const auto n_kv = mctx_cur->get_base()->get_n_kv();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
}
{
GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");
const auto n_kv = mctx_cur->get_swa()->get_n_kv();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
ggml_set_input(inp->self_kq_mask_swa);
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
}
return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_rs(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
int32_t state_size,
int32_t n_seqs,
uint32_t n_kv,
uint32_t kv_head,
uint32_t kv_size,
int32_t rs_zero,
bool avoid_copies) const {
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size);
// Clear a single state which will then be copied to the other cleared states.
// Note that this is a no-op when the view is zero-sized.
ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
ggml_tensor * output_states;
if (!avoid_copies) {
// copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
// {state_size, kv_size} -> {state_size, n_seqs}
output_states = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0));
ggml_build_forward_expand(gf, output_states);
} else {
// FIXME: make the gathering operation happen before the copy below
// (maybe with an optional lambda function passed as a parameter instead of `avoid_copies`?)
output_states = states;
}
// copy extra states which won't be changed further (between n_seqs and n_kv)
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0]));
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
states_extra,
ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s))));
return output_states;
}
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
const auto n_rs = mctx_cur->get_n_rs();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
ggml_set_input(inp->s_copy);
return (llm_graph_input_rs *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_rs(
llm_graph_input_rs * inp,
ggml_cgraph * gf,
ggml_tensor * s,
int32_t state_size,
int32_t n_seqs,
bool avoid_copies) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
}
ggml_tensor * llm_graph_context::build_rs(
llm_graph_input_mem_hybrid * inp,
ggml_cgraph * gf,
ggml_tensor * s,
int32_t state_size,
int32_t n_seqs,
bool avoid_copies) const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
}
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
llm_graph_input_rs * inp,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto token_shift_count = hparams.token_shift_count;
const int64_t n_seqs = ubatch.n_seqs;
ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
memory : Hybrid recurrent cache (#13979) * feat: Add llama_model_is_hybrid API call Also, split llama_model_is_recurrent into llm_arch_is_recurrent in llama-arch with llama_model_is_recurrent delegating to llm_arch_is_recurrent. The same split is done for hybird. This is needed because there are places where the llama_model has not yet been initialized but we need to check if the model is recurrent (specifically for the per-layer recurrent check array in hparams). Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add c++ side constants for attention layer indices hparam Branch: GraniteFour * feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: rename *_is_hybrid -> *_is_hybrid_recurrent The implementation of the hybrid cache intentionally does not specify the types of the child caches, so there was a naming mismatch with these predicate functions that used "hybrid" to imply "hybrid recurrent." Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Add layer filter to recurrent cache Branch: HybridCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer sizing everywhere in kv caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: First pass at llama_kv_cache_hybrid_recurrent This follows the pattern in iswa where the two child caches are held explicitly to support the case where a model requires a single attention cache and a single recurrent cache where each layer uses exactly one of the caches. This is a rewrite of the more generic approach in the original hybrid cache PR: https://github.com/ggml-org/llama.cpp/pull/13276 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Construct hybrid recurrent cache for hybrid recurrent models This includes a refactor of the create_memory logic to avoid needing to use the arch enum explicitly unless a model needs explicit cache instantiation logic beyond the standard logic for recurrent, hybrid, unified, and iswa. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix wrong bool condition for split equal in hybrid cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix shift logic to defer to unified cache Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Support hybrid recurrent in llama-graph NOTE: I intentionally did not add support for s_mask since it will be going away soon Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix logic for initializing inputs and attn layers for hybrid caches Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update recurrent cache for changes to remove intermediate kv_cache interface Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix status for init_update sig for recurrent cache state Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Add missing padding to n_ctx for hybrid cache construction Branch: GraniteFour Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update clear signature for data argument after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove errant virtual destructor leftover from previous impl attempt Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_s from unified cache No longer needed now that unified isn't also supporting recurrent https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069 Branch: HybridRecurrentCache * refactor: Remove layer index from n_embd_k/v_s Now that it's not used at all in the unified cache, we don't need to use the layer index to zero it out for attention layers. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Remove n_embd_k/v_gqa from recurrent cache This is no longer needed now that there are separate implementations https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Allow custom layer filters for hybrid recurrent This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove logits_all after rebase Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Remove llama_model_is_hybrid_Recurrent public API https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use llama_memory_state_ptr for child states in hybrid memory state Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738 This is a big overhaul to bring consistency between how inputs and per- layer components are created for attention layers and recurrent layers. The main changes are: - Rename class llm_graph_input_s_copy -> llm_graph_input_rs - Add a corresponding llm_graph_input_rs_hybrid_recurrent - Rename build_inp_s_copy -> build_rs_inp_recurrent - Add a corresponding build_rs_inp_hybrid_recurrent - Rename build_recurrent_state -> build_rs to match build_attn w/ llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a corresponding overload of build_rs w/ llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input - Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to llm_graph_input_attn_kv_unified - Add a build_attn override that takes llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input This makes the two paradigms fully consistent. The main drawback is the code duplication in the build_attn and build_rs implementations where the only difference between implementations is how they cast the memory state. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Fix resize vs reserve and skip null tensors in size computation https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-Authored-By: @younesbelkada * fix: Fix initialization of child states Since initially writing this PR, the logic in the child state types changed such that using the "init full" signature and keeping the ubatches on the parent struct no longer worked. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Use a common build_recurrent_state method that is cache-agnostic This reduces the code duplication between the different build_rs impls and also retains a similar signature to the previous build_recurrent_state method while standardizing on the input-dispatched build_rs implementation. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * recurrent : rework graph inputs + add TODOs ggml-ci * refactor: Make status and child states const in hybrid and iswa Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache This removes the notion of "kv" from the interface names for these memory types. There are still many references to kv in the implementation of the recurrent memory which will need further adjustment. Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor!: Rename all k/v related values for recurrent/hybrid to r/s Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more generic "mem_" prefix. The specifics of "k" (key) translate to "r" (recurrent state) and "v" (value) translate to "s" (state-space embedding states). Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refacor: _recurrent -> _recr for brevity It just _happens_ to have the same number of letters as _attn! Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for ref Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * refactor: recurrent_layer() -> is_recurrent() Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * style: Fix spacing for size_s_bytes declaration Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 00:08:14 -05:00
ggml_tensor * token_shift = build_rs(
inp, gf, token_shift_all,
hparams.n_embd_r(), n_seqs);
token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
return token_shift;
}
ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd;
const int64_t n_seqs = ubatch.n_seqs;
const auto kv_head = mctx_cur->get_head();
return ggml_cpy(
ctx0,
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
);
}
void llm_graph_context::build_pooling(
ggml_cgraph * gf,
ggml_tensor * cls,
ggml_tensor * cls_b,
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const {
if (!cparams.embeddings) {
return;
}
ggml_tensor * inp = res->t_embd;
//// find result_norm tensor for input
//for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
// inp = ggml_graph_node(gf, i);
// if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
// break;
// }
// inp = nullptr;
//}
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
ggml_tensor * cur;
switch (pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
cur = inp;
} break;
case LLAMA_POOLING_TYPE_MEAN:
{
ggml_tensor * inp_mean = build_inp_mean();
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
} break;
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
ggml_tensor * inp_cls = build_inp_cls();
cur = ggml_get_rows(ctx0, inp, inp_cls);
} break;
case LLAMA_POOLING_TYPE_RANK:
{
ggml_tensor * inp_cls = build_inp_cls();
inp = ggml_get_rows(ctx0, inp, inp_cls);
if (cls) {
// classification head
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
cur = ggml_mul_mat(ctx0, cls, inp);
if (cls_b) {
cur = ggml_add(ctx0, cur, cls_b);
}
cur = ggml_tanh(ctx0, cur);
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
if (cls_out) {
cur = ggml_mul_mat(ctx0, cls_out, cur);
if (cls_out_b) {
cur = ggml_add(ctx0, cur, cls_out_b);
}
}
} else if (cls_out) {
// Single layer classification head (direct projection)
// https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
cur = ggml_mul_mat(ctx0, cls_out, inp);
if (cls_out_b) {
cur = ggml_add(ctx0, cur, cls_out_b);
}
} else {
GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
}
} break;
default:
{
GGML_ABORT("unknown pooling type");
}
}
cb(cur, "result_embd_pooled", -1);
res->t_embd_pooled = cur;
ggml_build_forward_expand(gf, cur);
}
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
if (bidirectional) {
n_buckets >>= 1;
}
const int64_t max_exact = n_buckets >> 1;
int32_t relative_position = x - y;
int32_t relative_bucket = 0;
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
return relative_bucket;
}