kernel/drivers/usb/storage/alauda.c
2024-07-22 17:22:30 +08:00

1275 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Alauda-based card readers
*
* Current development and maintenance by:
* (c) 2005 Daniel Drake <dsd@gentoo.org>
*
* The 'Alauda' is a chip manufacturered by RATOC for OEM use.
*
* Alauda implements a vendor-specific command set to access two media reader
* ports (XD, SmartMedia). This driver converts SCSI commands to the commands
* which are accepted by these devices.
*
* The driver was developed through reverse-engineering, with the help of the
* sddr09 driver which has many similarities, and with some help from the
* (very old) vendor-supplied GPL sma03 driver.
*
* For protocol info, see http://alauda.sourceforge.net
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include "usb.h"
#include "transport.h"
#include "protocol.h"
#include "debug.h"
#include "scsiglue.h"
#define DRV_NAME "ums-alauda"
MODULE_DESCRIPTION("Driver for Alauda-based card readers");
MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(USB_STORAGE);
/*
* Status bytes
*/
#define ALAUDA_STATUS_ERROR 0x01
#define ALAUDA_STATUS_READY 0x40
/*
* Control opcodes (for request field)
*/
#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
#define ALAUDA_GET_XD_MEDIA_SIG 0x86
#define ALAUDA_GET_SM_MEDIA_SIG 0x96
/*
* Bulk command identity (byte 0)
*/
#define ALAUDA_BULK_CMD 0x40
/*
* Bulk opcodes (byte 1)
*/
#define ALAUDA_BULK_GET_REDU_DATA 0x85
#define ALAUDA_BULK_READ_BLOCK 0x94
#define ALAUDA_BULK_ERASE_BLOCK 0xa3
#define ALAUDA_BULK_WRITE_BLOCK 0xb4
#define ALAUDA_BULK_GET_STATUS2 0xb7
#define ALAUDA_BULK_RESET_MEDIA 0xe0
/*
* Port to operate on (byte 8)
*/
#define ALAUDA_PORT_XD 0x00
#define ALAUDA_PORT_SM 0x01
/*
* LBA and PBA are unsigned ints. Special values.
*/
#define UNDEF 0xffff
#define SPARE 0xfffe
#define UNUSABLE 0xfffd
struct alauda_media_info {
unsigned long capacity; /* total media size in bytes */
unsigned int pagesize; /* page size in bytes */
unsigned int blocksize; /* number of pages per block */
unsigned int uzonesize; /* number of usable blocks per zone */
unsigned int zonesize; /* number of blocks per zone */
unsigned int blockmask; /* mask to get page from address */
unsigned char pageshift;
unsigned char blockshift;
unsigned char zoneshift;
u16 **lba_to_pba; /* logical to physical block map */
u16 **pba_to_lba; /* physical to logical block map */
};
struct alauda_info {
struct alauda_media_info port[2];
int wr_ep; /* endpoint to write data out of */
unsigned char sense_key;
unsigned long sense_asc; /* additional sense code */
unsigned long sense_ascq; /* additional sense code qualifier */
bool media_initialized;
};
#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
#define LSB_of(s) ((s)&0xFF)
#define MSB_of(s) ((s)>>8)
#define MEDIA_PORT(us) us->srb->device->lun
#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
#define PBA_LO(pba) ((pba & 0xF) << 5)
#define PBA_HI(pba) (pba >> 3)
#define PBA_ZONE(pba) (pba >> 11)
static int init_alauda(struct us_data *us);
/*
* The table of devices
*/
#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
vendorName, productName, useProtocol, useTransport, \
initFunction, flags) \
{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
.driver_info = (flags) }
static struct usb_device_id alauda_usb_ids[] = {
# include "unusual_alauda.h"
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
#undef UNUSUAL_DEV
/*
* The flags table
*/
#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
vendor_name, product_name, use_protocol, use_transport, \
init_function, Flags) \
{ \
.vendorName = vendor_name, \
.productName = product_name, \
.useProtocol = use_protocol, \
.useTransport = use_transport, \
.initFunction = init_function, \
}
static struct us_unusual_dev alauda_unusual_dev_list[] = {
# include "unusual_alauda.h"
{ } /* Terminating entry */
};
#undef UNUSUAL_DEV
/*
* Media handling
*/
struct alauda_card_info {
unsigned char id; /* id byte */
unsigned char chipshift; /* 1<<cs bytes total capacity */
unsigned char pageshift; /* 1<<ps bytes in a page */
unsigned char blockshift; /* 1<<bs pages per block */
unsigned char zoneshift; /* 1<<zs blocks per zone */
};
static struct alauda_card_info alauda_card_ids[] = {
/* NAND flash */
{ 0x6e, 20, 8, 4, 8}, /* 1 MB */
{ 0xe8, 20, 8, 4, 8}, /* 1 MB */
{ 0xec, 20, 8, 4, 8}, /* 1 MB */
{ 0x64, 21, 8, 4, 9}, /* 2 MB */
{ 0xea, 21, 8, 4, 9}, /* 2 MB */
{ 0x6b, 22, 9, 4, 9}, /* 4 MB */
{ 0xe3, 22, 9, 4, 9}, /* 4 MB */
{ 0xe5, 22, 9, 4, 9}, /* 4 MB */
{ 0xe6, 23, 9, 4, 10}, /* 8 MB */
{ 0x73, 24, 9, 5, 10}, /* 16 MB */
{ 0x75, 25, 9, 5, 10}, /* 32 MB */
{ 0x76, 26, 9, 5, 10}, /* 64 MB */
{ 0x79, 27, 9, 5, 10}, /* 128 MB */
{ 0x71, 28, 9, 5, 10}, /* 256 MB */
/* MASK ROM */
{ 0x5d, 21, 9, 4, 8}, /* 2 MB */
{ 0xd5, 22, 9, 4, 9}, /* 4 MB */
{ 0xd6, 23, 9, 4, 10}, /* 8 MB */
{ 0x57, 24, 9, 4, 11}, /* 16 MB */
{ 0x58, 25, 9, 4, 12}, /* 32 MB */
{ 0,}
};
static struct alauda_card_info *alauda_card_find_id(unsigned char id)
{
int i;
for (i = 0; alauda_card_ids[i].id != 0; i++)
if (alauda_card_ids[i].id == id)
return &(alauda_card_ids[i]);
return NULL;
}
/*
* ECC computation.
*/
static unsigned char parity[256];
static unsigned char ecc2[256];
static void nand_init_ecc(void)
{
int i, j, a;
parity[0] = 0;
for (i = 1; i < 256; i++)
parity[i] = (parity[i&(i-1)] ^ 1);
for (i = 0; i < 256; i++) {
a = 0;
for (j = 0; j < 8; j++) {
if (i & (1<<j)) {
if ((j & 1) == 0)
a ^= 0x04;
if ((j & 2) == 0)
a ^= 0x10;
if ((j & 4) == 0)
a ^= 0x40;
}
}
ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
}
}
/* compute 3-byte ecc on 256 bytes */
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
{
int i, j, a;
unsigned char par = 0, bit, bits[8] = {0};
/* collect 16 checksum bits */
for (i = 0; i < 256; i++) {
par ^= data[i];
bit = parity[data[i]];
for (j = 0; j < 8; j++)
if ((i & (1<<j)) == 0)
bits[j] ^= bit;
}
/* put 4+4+4 = 12 bits in the ecc */
a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
ecc[2] = ecc2[par];
}
static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
{
return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
}
static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
{
memcpy(data, ecc, 3);
}
/*
* Alauda driver
*/
/*
* Forget our PBA <---> LBA mappings for a particular port
*/
static void alauda_free_maps (struct alauda_media_info *media_info)
{
unsigned int shift = media_info->zoneshift
+ media_info->blockshift + media_info->pageshift;
unsigned int num_zones = media_info->capacity >> shift;
unsigned int i;
if (media_info->lba_to_pba != NULL)
for (i = 0; i < num_zones; i++) {
kfree(media_info->lba_to_pba[i]);
media_info->lba_to_pba[i] = NULL;
}
if (media_info->pba_to_lba != NULL)
for (i = 0; i < num_zones; i++) {
kfree(media_info->pba_to_lba[i]);
media_info->pba_to_lba[i] = NULL;
}
}
/*
* Returns 2 bytes of status data
* The first byte describes media status, and second byte describes door status
*/
static int alauda_get_media_status(struct us_data *us, unsigned char *data)
{
int rc;
unsigned char command;
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
command = ALAUDA_GET_XD_MEDIA_STATUS;
else
command = ALAUDA_GET_SM_MEDIA_STATUS;
rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
command, 0xc0, 0, 1, data, 2);
if (rc == USB_STOR_XFER_GOOD)
usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
return rc;
}
/*
* Clears the "media was changed" bit so that we know when it changes again
* in the future.
*/
static int alauda_ack_media(struct us_data *us)
{
unsigned char command;
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
command = ALAUDA_ACK_XD_MEDIA_CHANGE;
else
command = ALAUDA_ACK_SM_MEDIA_CHANGE;
return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
command, 0x40, 0, 1, NULL, 0);
}
/*
* Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
* and some other details.
*/
static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
{
unsigned char command;
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
command = ALAUDA_GET_XD_MEDIA_SIG;
else
command = ALAUDA_GET_SM_MEDIA_SIG;
return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
command, 0xc0, 0, 0, data, 4);
}
/*
* Resets the media status (but not the whole device?)
*/
static int alauda_reset_media(struct us_data *us)
{
unsigned char *command = us->iobuf;
memset(command, 0, 9);
command[0] = ALAUDA_BULK_CMD;
command[1] = ALAUDA_BULK_RESET_MEDIA;
command[8] = MEDIA_PORT(us);
return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
}
/*
* Examines the media and deduces capacity, etc.
*/
static int alauda_init_media(struct us_data *us)
{
unsigned char *data = us->iobuf;
int ready = 0;
struct alauda_card_info *media_info;
unsigned int num_zones;
while (ready == 0) {
msleep(20);
if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (data[0] & 0x10)
ready = 1;
}
usb_stor_dbg(us, "We are ready for action!\n");
if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
msleep(10);
if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (data[0] != 0x14) {
usb_stor_dbg(us, "Media not ready after ack\n");
return USB_STOR_TRANSPORT_ERROR;
}
if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
usb_stor_dbg(us, "Media signature: %4ph\n", data);
media_info = alauda_card_find_id(data[1]);
if (media_info == NULL) {
pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
data);
return USB_STOR_TRANSPORT_ERROR;
}
MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
MEDIA_INFO(us).capacity >> 20);
MEDIA_INFO(us).pageshift = media_info->pageshift;
MEDIA_INFO(us).blockshift = media_info->blockshift;
MEDIA_INFO(us).zoneshift = media_info->zoneshift;
MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
return USB_STOR_TRANSPORT_ERROR;
if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Examines the media status and does the right thing when the media has gone,
* appeared, or changed.
*/
static int alauda_check_media(struct us_data *us)
{
struct alauda_info *info = (struct alauda_info *) us->extra;
unsigned char *status = us->iobuf;
int rc;
rc = alauda_get_media_status(us, status);
if (rc != USB_STOR_XFER_GOOD) {
status[0] = 0xF0; /* Pretend there's no media */
status[1] = 0;
}
/* Check for no media or door open */
if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
|| ((status[1] & 0x01) == 0)) {
usb_stor_dbg(us, "No media, or door open\n");
alauda_free_maps(&MEDIA_INFO(us));
info->sense_key = 0x02;
info->sense_asc = 0x3A;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
/* Check for media change */
if (status[0] & 0x08 || !info->media_initialized) {
usb_stor_dbg(us, "Media change detected\n");
alauda_free_maps(&MEDIA_INFO(us));
rc = alauda_init_media(us);
if (rc == USB_STOR_TRANSPORT_GOOD)
info->media_initialized = true;
info->sense_key = UNIT_ATTENTION;
info->sense_asc = 0x28;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Checks the status from the 2nd status register
* Returns 3 bytes of status data, only the first is known
*/
static int alauda_check_status2(struct us_data *us)
{
int rc;
unsigned char command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
};
unsigned char data[3];
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
data, 3, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
usb_stor_dbg(us, "%3ph\n", data);
if (data[0] & ALAUDA_STATUS_ERROR)
return USB_STOR_XFER_ERROR;
return USB_STOR_XFER_GOOD;
}
/*
* Gets the redundancy data for the first page of a PBA
* Returns 16 bytes.
*/
static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
{
int rc;
unsigned char command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
};
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
data, 16, NULL);
}
/*
* Finds the first unused PBA in a zone
* Returns the absolute PBA of an unused PBA, or 0 if none found.
*/
static u16 alauda_find_unused_pba(struct alauda_media_info *info,
unsigned int zone)
{
u16 *pba_to_lba = info->pba_to_lba[zone];
unsigned int i;
for (i = 0; i < info->zonesize; i++)
if (pba_to_lba[i] == UNDEF)
return (zone << info->zoneshift) + i;
return 0;
}
/*
* Reads the redundancy data for all PBA's in a zone
* Produces lba <--> pba mappings
*/
static int alauda_read_map(struct us_data *us, unsigned int zone)
{
unsigned char *data = us->iobuf;
int result;
int i, j;
unsigned int zonesize = MEDIA_INFO(us).zonesize;
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
unsigned int lba_offset, lba_real, blocknum;
unsigned int zone_base_lba = zone * uzonesize;
unsigned int zone_base_pba = zone * zonesize;
u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
if (lba_to_pba == NULL || pba_to_lba == NULL) {
result = USB_STOR_TRANSPORT_ERROR;
goto error;
}
usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
/* 1024 PBA's per zone */
for (i = 0; i < zonesize; i++)
lba_to_pba[i] = pba_to_lba[i] = UNDEF;
for (i = 0; i < zonesize; i++) {
blocknum = zone_base_pba + i;
result = alauda_get_redu_data(us, blocknum, data);
if (result != USB_STOR_XFER_GOOD) {
result = USB_STOR_TRANSPORT_ERROR;
goto error;
}
/* special PBAs have control field 0^16 */
for (j = 0; j < 16; j++)
if (data[j] != 0)
goto nonz;
pba_to_lba[i] = UNUSABLE;
usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
continue;
nonz:
/* unwritten PBAs have control field FF^16 */
for (j = 0; j < 16; j++)
if (data[j] != 0xff)
goto nonff;
continue;
nonff:
/* normal PBAs start with six FFs */
if (j < 6) {
usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
blocknum,
data[0], data[1], data[2], data[3],
data[4], data[5]);
pba_to_lba[i] = UNUSABLE;
continue;
}
if ((data[6] >> 4) != 0x01) {
usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
blocknum, data[6], data[7],
data[11], data[12]);
pba_to_lba[i] = UNUSABLE;
continue;
}
/* check even parity */
if (parity[data[6] ^ data[7]]) {
printk(KERN_WARNING
"alauda_read_map: Bad parity in LBA for block %d"
" (%02X %02X)\n", i, data[6], data[7]);
pba_to_lba[i] = UNUSABLE;
continue;
}
lba_offset = short_pack(data[7], data[6]);
lba_offset = (lba_offset & 0x07FF) >> 1;
lba_real = lba_offset + zone_base_lba;
/*
* Every 1024 physical blocks ("zone"), the LBA numbers
* go back to zero, but are within a higher block of LBA's.
* Also, there is a maximum of 1000 LBA's per zone.
* In other words, in PBA 1024-2047 you will find LBA 0-999
* which are really LBA 1000-1999. This allows for 24 bad
* or special physical blocks per zone.
*/
if (lba_offset >= uzonesize) {
printk(KERN_WARNING
"alauda_read_map: Bad low LBA %d for block %d\n",
lba_real, blocknum);
continue;
}
if (lba_to_pba[lba_offset] != UNDEF) {
printk(KERN_WARNING
"alauda_read_map: "
"LBA %d seen for PBA %d and %d\n",
lba_real, lba_to_pba[lba_offset], blocknum);
continue;
}
pba_to_lba[i] = lba_real;
lba_to_pba[lba_offset] = blocknum;
continue;
}
MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
result = 0;
goto out;
error:
kfree(lba_to_pba);
kfree(pba_to_lba);
out:
return result;
}
/*
* Checks to see whether we have already mapped a certain zone
* If we haven't, the map is generated
*/
static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
{
if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
alauda_read_map(us, zone);
}
/*
* Erases an entire block
*/
static int alauda_erase_block(struct us_data *us, u16 pba)
{
int rc;
unsigned char command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
};
unsigned char buf[2];
usb_stor_dbg(us, "Erasing PBA %d\n", pba);
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
buf, 2, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
return rc;
}
/*
* Reads data from a certain offset page inside a PBA, including interleaved
* redundancy data. Returns (pagesize+64)*pages bytes in data.
*/
static int alauda_read_block_raw(struct us_data *us, u16 pba,
unsigned int page, unsigned int pages, unsigned char *data)
{
int rc;
unsigned char command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
};
usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
}
/*
* Reads data from a certain offset page inside a PBA, excluding redundancy
* data. Returns pagesize*pages bytes in data. Note that data must be big enough
* to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
* trailing bytes outside this function.
*/
static int alauda_read_block(struct us_data *us, u16 pba,
unsigned int page, unsigned int pages, unsigned char *data)
{
int i, rc;
unsigned int pagesize = MEDIA_INFO(us).pagesize;
rc = alauda_read_block_raw(us, pba, page, pages, data);
if (rc != USB_STOR_XFER_GOOD)
return rc;
/* Cut out the redundancy data */
for (i = 0; i < pages; i++) {
int dest_offset = i * pagesize;
int src_offset = i * (pagesize + 64);
memmove(data + dest_offset, data + src_offset, pagesize);
}
return rc;
}
/*
* Writes an entire block of data and checks status after write.
* Redundancy data must be already included in data. Data should be
* (pagesize+64)*blocksize bytes in length.
*/
static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
{
int rc;
struct alauda_info *info = (struct alauda_info *) us->extra;
unsigned char command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
};
usb_stor_dbg(us, "pba %d\n", pba);
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
command, 9, NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
NULL);
if (rc != USB_STOR_XFER_GOOD)
return rc;
return alauda_check_status2(us);
}
/*
* Write some data to a specific LBA.
*/
static int alauda_write_lba(struct us_data *us, u16 lba,
unsigned int page, unsigned int pages,
unsigned char *ptr, unsigned char *blockbuffer)
{
u16 pba, lbap, new_pba;
unsigned char *bptr, *cptr, *xptr;
unsigned char ecc[3];
int i, result;
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
unsigned int zonesize = MEDIA_INFO(us).zonesize;
unsigned int pagesize = MEDIA_INFO(us).pagesize;
unsigned int blocksize = MEDIA_INFO(us).blocksize;
unsigned int lba_offset = lba % uzonesize;
unsigned int new_pba_offset;
unsigned int zone = lba / uzonesize;
alauda_ensure_map_for_zone(us, zone);
pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
if (pba == 1) {
/*
* Maybe it is impossible to write to PBA 1.
* Fake success, but don't do anything.
*/
printk(KERN_WARNING
"alauda_write_lba: avoid writing to pba 1\n");
return USB_STOR_TRANSPORT_GOOD;
}
new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
if (!new_pba) {
printk(KERN_WARNING
"alauda_write_lba: Out of unused blocks\n");
return USB_STOR_TRANSPORT_ERROR;
}
/* read old contents */
if (pba != UNDEF) {
result = alauda_read_block_raw(us, pba, 0,
blocksize, blockbuffer);
if (result != USB_STOR_XFER_GOOD)
return result;
} else {
memset(blockbuffer, 0, blocksize * (pagesize + 64));
}
lbap = (lba_offset << 1) | 0x1000;
if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
lbap ^= 1;
/* check old contents and fill lba */
for (i = 0; i < blocksize; i++) {
bptr = blockbuffer + (i * (pagesize + 64));
cptr = bptr + pagesize;
nand_compute_ecc(bptr, ecc);
if (!nand_compare_ecc(cptr+13, ecc)) {
usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
i, pba);
nand_store_ecc(cptr+13, ecc);
}
nand_compute_ecc(bptr + (pagesize / 2), ecc);
if (!nand_compare_ecc(cptr+8, ecc)) {
usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
i, pba);
nand_store_ecc(cptr+8, ecc);
}
cptr[6] = cptr[11] = MSB_of(lbap);
cptr[7] = cptr[12] = LSB_of(lbap);
}
/* copy in new stuff and compute ECC */
xptr = ptr;
for (i = page; i < page+pages; i++) {
bptr = blockbuffer + (i * (pagesize + 64));
cptr = bptr + pagesize;
memcpy(bptr, xptr, pagesize);
xptr += pagesize;
nand_compute_ecc(bptr, ecc);
nand_store_ecc(cptr+13, ecc);
nand_compute_ecc(bptr + (pagesize / 2), ecc);
nand_store_ecc(cptr+8, ecc);
}
result = alauda_write_block(us, new_pba, blockbuffer);
if (result != USB_STOR_XFER_GOOD)
return result;
new_pba_offset = new_pba - (zone * zonesize);
MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
if (pba != UNDEF) {
unsigned int pba_offset = pba - (zone * zonesize);
result = alauda_erase_block(us, pba);
if (result != USB_STOR_XFER_GOOD)
return result;
MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
}
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Read data from a specific sector address
*/
static int alauda_read_data(struct us_data *us, unsigned long address,
unsigned int sectors)
{
unsigned char *buffer;
u16 lba, max_lba;
unsigned int page, len, offset;
unsigned int blockshift = MEDIA_INFO(us).blockshift;
unsigned int pageshift = MEDIA_INFO(us).pageshift;
unsigned int blocksize = MEDIA_INFO(us).blocksize;
unsigned int pagesize = MEDIA_INFO(us).pagesize;
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
struct scatterlist *sg;
int result;
/*
* Since we only read in one block at a time, we have to create
* a bounce buffer and move the data a piece at a time between the
* bounce buffer and the actual transfer buffer.
* We make this buffer big enough to hold temporary redundancy data,
* which we use when reading the data blocks.
*/
len = min(sectors, blocksize) * (pagesize + 64);
buffer = kmalloc(len, GFP_NOIO);
if (!buffer)
return USB_STOR_TRANSPORT_ERROR;
/* Figure out the initial LBA and page */
lba = address >> blockshift;
page = (address & MEDIA_INFO(us).blockmask);
max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
result = USB_STOR_TRANSPORT_GOOD;
offset = 0;
sg = NULL;
while (sectors > 0) {
unsigned int zone = lba / uzonesize; /* integer division */
unsigned int lba_offset = lba - (zone * uzonesize);
unsigned int pages;
u16 pba;
alauda_ensure_map_for_zone(us, zone);
/* Not overflowing capacity? */
if (lba >= max_lba) {
usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
lba, max_lba);
result = USB_STOR_TRANSPORT_ERROR;
break;
}
/* Find number of pages we can read in this block */
pages = min(sectors, blocksize - page);
len = pages << pageshift;
/* Find where this lba lives on disk */
pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
if (pba == UNDEF) { /* this lba was never written */
usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
pages, lba, page);
/*
* This is not really an error. It just means
* that the block has never been written.
* Instead of returning USB_STOR_TRANSPORT_ERROR
* it is better to return all zero data.
*/
memset(buffer, 0, len);
} else {
usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
pages, pba, lba, page);
result = alauda_read_block(us, pba, page, pages, buffer);
if (result != USB_STOR_TRANSPORT_GOOD)
break;
}
/* Store the data in the transfer buffer */
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg, &offset, TO_XFER_BUF);
page = 0;
lba++;
sectors -= pages;
}
kfree(buffer);
return result;
}
/*
* Write data to a specific sector address
*/
static int alauda_write_data(struct us_data *us, unsigned long address,
unsigned int sectors)
{
unsigned char *buffer, *blockbuffer;
unsigned int page, len, offset;
unsigned int blockshift = MEDIA_INFO(us).blockshift;
unsigned int pageshift = MEDIA_INFO(us).pageshift;
unsigned int blocksize = MEDIA_INFO(us).blocksize;
unsigned int pagesize = MEDIA_INFO(us).pagesize;
struct scatterlist *sg;
u16 lba, max_lba;
int result;
/*
* Since we don't write the user data directly to the device,
* we have to create a bounce buffer and move the data a piece
* at a time between the bounce buffer and the actual transfer buffer.
*/
len = min(sectors, blocksize) * pagesize;
buffer = kmalloc(len, GFP_NOIO);
if (!buffer)
return USB_STOR_TRANSPORT_ERROR;
/*
* We also need a temporary block buffer, where we read in the old data,
* overwrite parts with the new data, and manipulate the redundancy data
*/
blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
if (!blockbuffer) {
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
/* Figure out the initial LBA and page */
lba = address >> blockshift;
page = (address & MEDIA_INFO(us).blockmask);
max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
result = USB_STOR_TRANSPORT_GOOD;
offset = 0;
sg = NULL;
while (sectors > 0) {
/* Write as many sectors as possible in this block */
unsigned int pages = min(sectors, blocksize - page);
len = pages << pageshift;
/* Not overflowing capacity? */
if (lba >= max_lba) {
usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
lba, max_lba);
result = USB_STOR_TRANSPORT_ERROR;
break;
}
/* Get the data from the transfer buffer */
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg, &offset, FROM_XFER_BUF);
result = alauda_write_lba(us, lba, page, pages, buffer,
blockbuffer);
if (result != USB_STOR_TRANSPORT_GOOD)
break;
page = 0;
lba++;
sectors -= pages;
}
kfree(buffer);
kfree(blockbuffer);
return result;
}
/*
* Our interface with the rest of the world
*/
static void alauda_info_destructor(void *extra)
{
struct alauda_info *info = (struct alauda_info *) extra;
int port;
if (!info)
return;
for (port = 0; port < 2; port++) {
struct alauda_media_info *media_info = &info->port[port];
alauda_free_maps(media_info);
kfree(media_info->lba_to_pba);
kfree(media_info->pba_to_lba);
}
}
/*
* Initialize alauda_info struct and find the data-write endpoint
*/
static int init_alauda(struct us_data *us)
{
struct alauda_info *info;
struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
nand_init_ecc();
us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
if (!us->extra)
return USB_STOR_TRANSPORT_ERROR;
info = (struct alauda_info *) us->extra;
us->extra_destructor = alauda_info_destructor;
info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
altsetting->endpoint[0].desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
return USB_STOR_TRANSPORT_GOOD;
}
static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
{
int rc;
struct alauda_info *info = (struct alauda_info *) us->extra;
unsigned char *ptr = us->iobuf;
static unsigned char inquiry_response[36] = {
0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
};
if (srb->cmnd[0] == INQUIRY) {
usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
memcpy(ptr, inquiry_response, sizeof(inquiry_response));
fill_inquiry_response(us, ptr, 36);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == TEST_UNIT_READY) {
usb_stor_dbg(us, "TEST_UNIT_READY\n");
return alauda_check_media(us);
}
if (srb->cmnd[0] == READ_CAPACITY) {
unsigned int num_zones;
unsigned long capacity;
rc = alauda_check_media(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
capacity = num_zones * MEDIA_INFO(us).uzonesize
* MEDIA_INFO(us).blocksize;
/* Report capacity and page size */
((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
((__be32 *) ptr)[1] = cpu_to_be32(512);
usb_stor_set_xfer_buf(ptr, 8, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == READ_10) {
unsigned int page, pages;
rc = alauda_check_media(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
page <<= 16;
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
return alauda_read_data(us, page, pages);
}
if (srb->cmnd[0] == WRITE_10) {
unsigned int page, pages;
rc = alauda_check_media(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
page <<= 16;
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
return alauda_write_data(us, page, pages);
}
if (srb->cmnd[0] == REQUEST_SENSE) {
usb_stor_dbg(us, "REQUEST_SENSE\n");
memset(ptr, 0, 18);
ptr[0] = 0xF0;
ptr[2] = info->sense_key;
ptr[7] = 11;
ptr[12] = info->sense_asc;
ptr[13] = info->sense_ascq;
usb_stor_set_xfer_buf(ptr, 18, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
/*
* sure. whatever. not like we can stop the user from popping
* the media out of the device (no locking doors, etc)
*/
return USB_STOR_TRANSPORT_GOOD;
}
usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
srb->cmnd[0], srb->cmnd[0]);
info->sense_key = 0x05;
info->sense_asc = 0x20;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
static struct scsi_host_template alauda_host_template;
static int alauda_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct us_data *us;
int result;
result = usb_stor_probe1(&us, intf, id,
(id - alauda_usb_ids) + alauda_unusual_dev_list,
&alauda_host_template);
if (result)
return result;
us->transport_name = "Alauda Control/Bulk";
us->transport = alauda_transport;
us->transport_reset = usb_stor_Bulk_reset;
us->max_lun = 1;
result = usb_stor_probe2(us);
return result;
}
static struct usb_driver alauda_driver = {
.name = DRV_NAME,
.probe = alauda_probe,
.disconnect = usb_stor_disconnect,
.suspend = usb_stor_suspend,
.resume = usb_stor_resume,
.reset_resume = usb_stor_reset_resume,
.pre_reset = usb_stor_pre_reset,
.post_reset = usb_stor_post_reset,
.id_table = alauda_usb_ids,
.soft_unbind = 1,
.no_dynamic_id = 1,
};
module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);