// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Alauda-based card readers * * Current development and maintenance by: * (c) 2005 Daniel Drake * * The 'Alauda' is a chip manufacturered by RATOC for OEM use. * * Alauda implements a vendor-specific command set to access two media reader * ports (XD, SmartMedia). This driver converts SCSI commands to the commands * which are accepted by these devices. * * The driver was developed through reverse-engineering, with the help of the * sddr09 driver which has many similarities, and with some help from the * (very old) vendor-supplied GPL sma03 driver. * * For protocol info, see http://alauda.sourceforge.net */ #include #include #include #include #include #include "usb.h" #include "transport.h" #include "protocol.h" #include "debug.h" #include "scsiglue.h" #define DRV_NAME "ums-alauda" MODULE_DESCRIPTION("Driver for Alauda-based card readers"); MODULE_AUTHOR("Daniel Drake "); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(USB_STORAGE); /* * Status bytes */ #define ALAUDA_STATUS_ERROR 0x01 #define ALAUDA_STATUS_READY 0x40 /* * Control opcodes (for request field) */ #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a #define ALAUDA_GET_XD_MEDIA_SIG 0x86 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 /* * Bulk command identity (byte 0) */ #define ALAUDA_BULK_CMD 0x40 /* * Bulk opcodes (byte 1) */ #define ALAUDA_BULK_GET_REDU_DATA 0x85 #define ALAUDA_BULK_READ_BLOCK 0x94 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 #define ALAUDA_BULK_GET_STATUS2 0xb7 #define ALAUDA_BULK_RESET_MEDIA 0xe0 /* * Port to operate on (byte 8) */ #define ALAUDA_PORT_XD 0x00 #define ALAUDA_PORT_SM 0x01 /* * LBA and PBA are unsigned ints. Special values. */ #define UNDEF 0xffff #define SPARE 0xfffe #define UNUSABLE 0xfffd struct alauda_media_info { unsigned long capacity; /* total media size in bytes */ unsigned int pagesize; /* page size in bytes */ unsigned int blocksize; /* number of pages per block */ unsigned int uzonesize; /* number of usable blocks per zone */ unsigned int zonesize; /* number of blocks per zone */ unsigned int blockmask; /* mask to get page from address */ unsigned char pageshift; unsigned char blockshift; unsigned char zoneshift; u16 **lba_to_pba; /* logical to physical block map */ u16 **pba_to_lba; /* physical to logical block map */ }; struct alauda_info { struct alauda_media_info port[2]; int wr_ep; /* endpoint to write data out of */ unsigned char sense_key; unsigned long sense_asc; /* additional sense code */ unsigned long sense_ascq; /* additional sense code qualifier */ bool media_initialized; }; #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) #define LSB_of(s) ((s)&0xFF) #define MSB_of(s) ((s)>>8) #define MEDIA_PORT(us) us->srb->device->lun #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] #define PBA_LO(pba) ((pba & 0xF) << 5) #define PBA_HI(pba) (pba >> 3) #define PBA_ZONE(pba) (pba >> 11) static int init_alauda(struct us_data *us); /* * The table of devices */ #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ vendorName, productName, useProtocol, useTransport, \ initFunction, flags) \ { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ .driver_info = (flags) } static struct usb_device_id alauda_usb_ids[] = { # include "unusual_alauda.h" { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, alauda_usb_ids); #undef UNUSUAL_DEV /* * The flags table */ #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ vendor_name, product_name, use_protocol, use_transport, \ init_function, Flags) \ { \ .vendorName = vendor_name, \ .productName = product_name, \ .useProtocol = use_protocol, \ .useTransport = use_transport, \ .initFunction = init_function, \ } static struct us_unusual_dev alauda_unusual_dev_list[] = { # include "unusual_alauda.h" { } /* Terminating entry */ }; #undef UNUSUAL_DEV /* * Media handling */ struct alauda_card_info { unsigned char id; /* id byte */ unsigned char chipshift; /* 1< LBA mappings for a particular port */ static void alauda_free_maps (struct alauda_media_info *media_info) { unsigned int shift = media_info->zoneshift + media_info->blockshift + media_info->pageshift; unsigned int num_zones = media_info->capacity >> shift; unsigned int i; if (media_info->lba_to_pba != NULL) for (i = 0; i < num_zones; i++) { kfree(media_info->lba_to_pba[i]); media_info->lba_to_pba[i] = NULL; } if (media_info->pba_to_lba != NULL) for (i = 0; i < num_zones; i++) { kfree(media_info->pba_to_lba[i]); media_info->pba_to_lba[i] = NULL; } } /* * Returns 2 bytes of status data * The first byte describes media status, and second byte describes door status */ static int alauda_get_media_status(struct us_data *us, unsigned char *data) { int rc; unsigned char command; if (MEDIA_PORT(us) == ALAUDA_PORT_XD) command = ALAUDA_GET_XD_MEDIA_STATUS; else command = ALAUDA_GET_SM_MEDIA_STATUS; rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, command, 0xc0, 0, 1, data, 2); if (rc == USB_STOR_XFER_GOOD) usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); return rc; } /* * Clears the "media was changed" bit so that we know when it changes again * in the future. */ static int alauda_ack_media(struct us_data *us) { unsigned char command; if (MEDIA_PORT(us) == ALAUDA_PORT_XD) command = ALAUDA_ACK_XD_MEDIA_CHANGE; else command = ALAUDA_ACK_SM_MEDIA_CHANGE; return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, command, 0x40, 0, 1, NULL, 0); } /* * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, * and some other details. */ static int alauda_get_media_signature(struct us_data *us, unsigned char *data) { unsigned char command; if (MEDIA_PORT(us) == ALAUDA_PORT_XD) command = ALAUDA_GET_XD_MEDIA_SIG; else command = ALAUDA_GET_SM_MEDIA_SIG; return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, command, 0xc0, 0, 0, data, 4); } /* * Resets the media status (but not the whole device?) */ static int alauda_reset_media(struct us_data *us) { unsigned char *command = us->iobuf; memset(command, 0, 9); command[0] = ALAUDA_BULK_CMD; command[1] = ALAUDA_BULK_RESET_MEDIA; command[8] = MEDIA_PORT(us); return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); } /* * Examines the media and deduces capacity, etc. */ static int alauda_init_media(struct us_data *us) { unsigned char *data = us->iobuf; int ready = 0; struct alauda_card_info *media_info; unsigned int num_zones; while (ready == 0) { msleep(20); if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; if (data[0] & 0x10) ready = 1; } usb_stor_dbg(us, "We are ready for action!\n"); if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; msleep(10); if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; if (data[0] != 0x14) { usb_stor_dbg(us, "Media not ready after ack\n"); return USB_STOR_TRANSPORT_ERROR; } if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; usb_stor_dbg(us, "Media signature: %4ph\n", data); media_info = alauda_card_find_id(data[1]); if (media_info == NULL) { pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", data); return USB_STOR_TRANSPORT_ERROR; } MEDIA_INFO(us).capacity = 1 << media_info->chipshift; usb_stor_dbg(us, "Found media with capacity: %ldMB\n", MEDIA_INFO(us).capacity >> 20); MEDIA_INFO(us).pageshift = media_info->pageshift; MEDIA_INFO(us).blockshift = media_info->blockshift; MEDIA_INFO(us).zoneshift = media_info->zoneshift; MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL) return USB_STOR_TRANSPORT_ERROR; if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; return USB_STOR_TRANSPORT_GOOD; } /* * Examines the media status and does the right thing when the media has gone, * appeared, or changed. */ static int alauda_check_media(struct us_data *us) { struct alauda_info *info = (struct alauda_info *) us->extra; unsigned char *status = us->iobuf; int rc; rc = alauda_get_media_status(us, status); if (rc != USB_STOR_XFER_GOOD) { status[0] = 0xF0; /* Pretend there's no media */ status[1] = 0; } /* Check for no media or door open */ if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) || ((status[1] & 0x01) == 0)) { usb_stor_dbg(us, "No media, or door open\n"); alauda_free_maps(&MEDIA_INFO(us)); info->sense_key = 0x02; info->sense_asc = 0x3A; info->sense_ascq = 0x00; return USB_STOR_TRANSPORT_FAILED; } /* Check for media change */ if (status[0] & 0x08 || !info->media_initialized) { usb_stor_dbg(us, "Media change detected\n"); alauda_free_maps(&MEDIA_INFO(us)); rc = alauda_init_media(us); if (rc == USB_STOR_TRANSPORT_GOOD) info->media_initialized = true; info->sense_key = UNIT_ATTENTION; info->sense_asc = 0x28; info->sense_ascq = 0x00; return USB_STOR_TRANSPORT_FAILED; } return USB_STOR_TRANSPORT_GOOD; } /* * Checks the status from the 2nd status register * Returns 3 bytes of status data, only the first is known */ static int alauda_check_status2(struct us_data *us) { int rc; unsigned char command[] = { ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) }; unsigned char data[3]; rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data, 3, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; usb_stor_dbg(us, "%3ph\n", data); if (data[0] & ALAUDA_STATUS_ERROR) return USB_STOR_XFER_ERROR; return USB_STOR_XFER_GOOD; } /* * Gets the redundancy data for the first page of a PBA * Returns 16 bytes. */ static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) { int rc; unsigned char command[] = { ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) }; rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data, 16, NULL); } /* * Finds the first unused PBA in a zone * Returns the absolute PBA of an unused PBA, or 0 if none found. */ static u16 alauda_find_unused_pba(struct alauda_media_info *info, unsigned int zone) { u16 *pba_to_lba = info->pba_to_lba[zone]; unsigned int i; for (i = 0; i < info->zonesize; i++) if (pba_to_lba[i] == UNDEF) return (zone << info->zoneshift) + i; return 0; } /* * Reads the redundancy data for all PBA's in a zone * Produces lba <--> pba mappings */ static int alauda_read_map(struct us_data *us, unsigned int zone) { unsigned char *data = us->iobuf; int result; int i, j; unsigned int zonesize = MEDIA_INFO(us).zonesize; unsigned int uzonesize = MEDIA_INFO(us).uzonesize; unsigned int lba_offset, lba_real, blocknum; unsigned int zone_base_lba = zone * uzonesize; unsigned int zone_base_pba = zone * zonesize; u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); if (lba_to_pba == NULL || pba_to_lba == NULL) { result = USB_STOR_TRANSPORT_ERROR; goto error; } usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); /* 1024 PBA's per zone */ for (i = 0; i < zonesize; i++) lba_to_pba[i] = pba_to_lba[i] = UNDEF; for (i = 0; i < zonesize; i++) { blocknum = zone_base_pba + i; result = alauda_get_redu_data(us, blocknum, data); if (result != USB_STOR_XFER_GOOD) { result = USB_STOR_TRANSPORT_ERROR; goto error; } /* special PBAs have control field 0^16 */ for (j = 0; j < 16; j++) if (data[j] != 0) goto nonz; pba_to_lba[i] = UNUSABLE; usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); continue; nonz: /* unwritten PBAs have control field FF^16 */ for (j = 0; j < 16; j++) if (data[j] != 0xff) goto nonff; continue; nonff: /* normal PBAs start with six FFs */ if (j < 6) { usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", blocknum, data[0], data[1], data[2], data[3], data[4], data[5]); pba_to_lba[i] = UNUSABLE; continue; } if ((data[6] >> 4) != 0x01) { usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", blocknum, data[6], data[7], data[11], data[12]); pba_to_lba[i] = UNUSABLE; continue; } /* check even parity */ if (parity[data[6] ^ data[7]]) { printk(KERN_WARNING "alauda_read_map: Bad parity in LBA for block %d" " (%02X %02X)\n", i, data[6], data[7]); pba_to_lba[i] = UNUSABLE; continue; } lba_offset = short_pack(data[7], data[6]); lba_offset = (lba_offset & 0x07FF) >> 1; lba_real = lba_offset + zone_base_lba; /* * Every 1024 physical blocks ("zone"), the LBA numbers * go back to zero, but are within a higher block of LBA's. * Also, there is a maximum of 1000 LBA's per zone. * In other words, in PBA 1024-2047 you will find LBA 0-999 * which are really LBA 1000-1999. This allows for 24 bad * or special physical blocks per zone. */ if (lba_offset >= uzonesize) { printk(KERN_WARNING "alauda_read_map: Bad low LBA %d for block %d\n", lba_real, blocknum); continue; } if (lba_to_pba[lba_offset] != UNDEF) { printk(KERN_WARNING "alauda_read_map: " "LBA %d seen for PBA %d and %d\n", lba_real, lba_to_pba[lba_offset], blocknum); continue; } pba_to_lba[i] = lba_real; lba_to_pba[lba_offset] = blocknum; continue; } MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; result = 0; goto out; error: kfree(lba_to_pba); kfree(pba_to_lba); out: return result; } /* * Checks to see whether we have already mapped a certain zone * If we haven't, the map is generated */ static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) { if (MEDIA_INFO(us).lba_to_pba[zone] == NULL || MEDIA_INFO(us).pba_to_lba[zone] == NULL) alauda_read_map(us, zone); } /* * Erases an entire block */ static int alauda_erase_block(struct us_data *us, u16 pba) { int rc; unsigned char command[] = { ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) }; unsigned char buf[2]; usb_stor_dbg(us, "Erasing PBA %d\n", pba); rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, buf, 2, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); return rc; } /* * Reads data from a certain offset page inside a PBA, including interleaved * redundancy data. Returns (pagesize+64)*pages bytes in data. */ static int alauda_read_block_raw(struct us_data *us, u16 pba, unsigned int page, unsigned int pages, unsigned char *data) { int rc; unsigned char command[] = { ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) }; usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); } /* * Reads data from a certain offset page inside a PBA, excluding redundancy * data. Returns pagesize*pages bytes in data. Note that data must be big enough * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' * trailing bytes outside this function. */ static int alauda_read_block(struct us_data *us, u16 pba, unsigned int page, unsigned int pages, unsigned char *data) { int i, rc; unsigned int pagesize = MEDIA_INFO(us).pagesize; rc = alauda_read_block_raw(us, pba, page, pages, data); if (rc != USB_STOR_XFER_GOOD) return rc; /* Cut out the redundancy data */ for (i = 0; i < pages; i++) { int dest_offset = i * pagesize; int src_offset = i * (pagesize + 64); memmove(data + dest_offset, data + src_offset, pagesize); } return rc; } /* * Writes an entire block of data and checks status after write. * Redundancy data must be already included in data. Data should be * (pagesize+64)*blocksize bytes in length. */ static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) { int rc; struct alauda_info *info = (struct alauda_info *) us->extra; unsigned char command[] = { ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) }; usb_stor_dbg(us, "pba %d\n", pba); rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, command, 9, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, NULL); if (rc != USB_STOR_XFER_GOOD) return rc; return alauda_check_status2(us); } /* * Write some data to a specific LBA. */ static int alauda_write_lba(struct us_data *us, u16 lba, unsigned int page, unsigned int pages, unsigned char *ptr, unsigned char *blockbuffer) { u16 pba, lbap, new_pba; unsigned char *bptr, *cptr, *xptr; unsigned char ecc[3]; int i, result; unsigned int uzonesize = MEDIA_INFO(us).uzonesize; unsigned int zonesize = MEDIA_INFO(us).zonesize; unsigned int pagesize = MEDIA_INFO(us).pagesize; unsigned int blocksize = MEDIA_INFO(us).blocksize; unsigned int lba_offset = lba % uzonesize; unsigned int new_pba_offset; unsigned int zone = lba / uzonesize; alauda_ensure_map_for_zone(us, zone); pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; if (pba == 1) { /* * Maybe it is impossible to write to PBA 1. * Fake success, but don't do anything. */ printk(KERN_WARNING "alauda_write_lba: avoid writing to pba 1\n"); return USB_STOR_TRANSPORT_GOOD; } new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); if (!new_pba) { printk(KERN_WARNING "alauda_write_lba: Out of unused blocks\n"); return USB_STOR_TRANSPORT_ERROR; } /* read old contents */ if (pba != UNDEF) { result = alauda_read_block_raw(us, pba, 0, blocksize, blockbuffer); if (result != USB_STOR_XFER_GOOD) return result; } else { memset(blockbuffer, 0, blocksize * (pagesize + 64)); } lbap = (lba_offset << 1) | 0x1000; if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) lbap ^= 1; /* check old contents and fill lba */ for (i = 0; i < blocksize; i++) { bptr = blockbuffer + (i * (pagesize + 64)); cptr = bptr + pagesize; nand_compute_ecc(bptr, ecc); if (!nand_compare_ecc(cptr+13, ecc)) { usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", i, pba); nand_store_ecc(cptr+13, ecc); } nand_compute_ecc(bptr + (pagesize / 2), ecc); if (!nand_compare_ecc(cptr+8, ecc)) { usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", i, pba); nand_store_ecc(cptr+8, ecc); } cptr[6] = cptr[11] = MSB_of(lbap); cptr[7] = cptr[12] = LSB_of(lbap); } /* copy in new stuff and compute ECC */ xptr = ptr; for (i = page; i < page+pages; i++) { bptr = blockbuffer + (i * (pagesize + 64)); cptr = bptr + pagesize; memcpy(bptr, xptr, pagesize); xptr += pagesize; nand_compute_ecc(bptr, ecc); nand_store_ecc(cptr+13, ecc); nand_compute_ecc(bptr + (pagesize / 2), ecc); nand_store_ecc(cptr+8, ecc); } result = alauda_write_block(us, new_pba, blockbuffer); if (result != USB_STOR_XFER_GOOD) return result; new_pba_offset = new_pba - (zone * zonesize); MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); if (pba != UNDEF) { unsigned int pba_offset = pba - (zone * zonesize); result = alauda_erase_block(us, pba); if (result != USB_STOR_XFER_GOOD) return result; MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; } return USB_STOR_TRANSPORT_GOOD; } /* * Read data from a specific sector address */ static int alauda_read_data(struct us_data *us, unsigned long address, unsigned int sectors) { unsigned char *buffer; u16 lba, max_lba; unsigned int page, len, offset; unsigned int blockshift = MEDIA_INFO(us).blockshift; unsigned int pageshift = MEDIA_INFO(us).pageshift; unsigned int blocksize = MEDIA_INFO(us).blocksize; unsigned int pagesize = MEDIA_INFO(us).pagesize; unsigned int uzonesize = MEDIA_INFO(us).uzonesize; struct scatterlist *sg; int result; /* * Since we only read in one block at a time, we have to create * a bounce buffer and move the data a piece at a time between the * bounce buffer and the actual transfer buffer. * We make this buffer big enough to hold temporary redundancy data, * which we use when reading the data blocks. */ len = min(sectors, blocksize) * (pagesize + 64); buffer = kmalloc(len, GFP_NOIO); if (!buffer) return USB_STOR_TRANSPORT_ERROR; /* Figure out the initial LBA and page */ lba = address >> blockshift; page = (address & MEDIA_INFO(us).blockmask); max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); result = USB_STOR_TRANSPORT_GOOD; offset = 0; sg = NULL; while (sectors > 0) { unsigned int zone = lba / uzonesize; /* integer division */ unsigned int lba_offset = lba - (zone * uzonesize); unsigned int pages; u16 pba; alauda_ensure_map_for_zone(us, zone); /* Not overflowing capacity? */ if (lba >= max_lba) { usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", lba, max_lba); result = USB_STOR_TRANSPORT_ERROR; break; } /* Find number of pages we can read in this block */ pages = min(sectors, blocksize - page); len = pages << pageshift; /* Find where this lba lives on disk */ pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; if (pba == UNDEF) { /* this lba was never written */ usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", pages, lba, page); /* * This is not really an error. It just means * that the block has never been written. * Instead of returning USB_STOR_TRANSPORT_ERROR * it is better to return all zero data. */ memset(buffer, 0, len); } else { usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", pages, pba, lba, page); result = alauda_read_block(us, pba, page, pages, buffer); if (result != USB_STOR_TRANSPORT_GOOD) break; } /* Store the data in the transfer buffer */ usb_stor_access_xfer_buf(buffer, len, us->srb, &sg, &offset, TO_XFER_BUF); page = 0; lba++; sectors -= pages; } kfree(buffer); return result; } /* * Write data to a specific sector address */ static int alauda_write_data(struct us_data *us, unsigned long address, unsigned int sectors) { unsigned char *buffer, *blockbuffer; unsigned int page, len, offset; unsigned int blockshift = MEDIA_INFO(us).blockshift; unsigned int pageshift = MEDIA_INFO(us).pageshift; unsigned int blocksize = MEDIA_INFO(us).blocksize; unsigned int pagesize = MEDIA_INFO(us).pagesize; struct scatterlist *sg; u16 lba, max_lba; int result; /* * Since we don't write the user data directly to the device, * we have to create a bounce buffer and move the data a piece * at a time between the bounce buffer and the actual transfer buffer. */ len = min(sectors, blocksize) * pagesize; buffer = kmalloc(len, GFP_NOIO); if (!buffer) return USB_STOR_TRANSPORT_ERROR; /* * We also need a temporary block buffer, where we read in the old data, * overwrite parts with the new data, and manipulate the redundancy data */ blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO); if (!blockbuffer) { kfree(buffer); return USB_STOR_TRANSPORT_ERROR; } /* Figure out the initial LBA and page */ lba = address >> blockshift; page = (address & MEDIA_INFO(us).blockmask); max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); result = USB_STOR_TRANSPORT_GOOD; offset = 0; sg = NULL; while (sectors > 0) { /* Write as many sectors as possible in this block */ unsigned int pages = min(sectors, blocksize - page); len = pages << pageshift; /* Not overflowing capacity? */ if (lba >= max_lba) { usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", lba, max_lba); result = USB_STOR_TRANSPORT_ERROR; break; } /* Get the data from the transfer buffer */ usb_stor_access_xfer_buf(buffer, len, us->srb, &sg, &offset, FROM_XFER_BUF); result = alauda_write_lba(us, lba, page, pages, buffer, blockbuffer); if (result != USB_STOR_TRANSPORT_GOOD) break; page = 0; lba++; sectors -= pages; } kfree(buffer); kfree(blockbuffer); return result; } /* * Our interface with the rest of the world */ static void alauda_info_destructor(void *extra) { struct alauda_info *info = (struct alauda_info *) extra; int port; if (!info) return; for (port = 0; port < 2; port++) { struct alauda_media_info *media_info = &info->port[port]; alauda_free_maps(media_info); kfree(media_info->lba_to_pba); kfree(media_info->pba_to_lba); } } /* * Initialize alauda_info struct and find the data-write endpoint */ static int init_alauda(struct us_data *us) { struct alauda_info *info; struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; nand_init_ecc(); us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); if (!us->extra) return USB_STOR_TRANSPORT_ERROR; info = (struct alauda_info *) us->extra; us->extra_destructor = alauda_info_destructor; info->wr_ep = usb_sndbulkpipe(us->pusb_dev, altsetting->endpoint[0].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); return USB_STOR_TRANSPORT_GOOD; } static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) { int rc; struct alauda_info *info = (struct alauda_info *) us->extra; unsigned char *ptr = us->iobuf; static unsigned char inquiry_response[36] = { 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 }; if (srb->cmnd[0] == INQUIRY) { usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); memcpy(ptr, inquiry_response, sizeof(inquiry_response)); fill_inquiry_response(us, ptr, 36); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == TEST_UNIT_READY) { usb_stor_dbg(us, "TEST_UNIT_READY\n"); return alauda_check_media(us); } if (srb->cmnd[0] == READ_CAPACITY) { unsigned int num_zones; unsigned long capacity; rc = alauda_check_media(us); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); capacity = num_zones * MEDIA_INFO(us).uzonesize * MEDIA_INFO(us).blocksize; /* Report capacity and page size */ ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); ((__be32 *) ptr)[1] = cpu_to_be32(512); usb_stor_set_xfer_buf(ptr, 8, srb); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == READ_10) { unsigned int page, pages; rc = alauda_check_media(us); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; page = short_pack(srb->cmnd[3], srb->cmnd[2]); page <<= 16; page |= short_pack(srb->cmnd[5], srb->cmnd[4]); pages = short_pack(srb->cmnd[8], srb->cmnd[7]); usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); return alauda_read_data(us, page, pages); } if (srb->cmnd[0] == WRITE_10) { unsigned int page, pages; rc = alauda_check_media(us); if (rc != USB_STOR_TRANSPORT_GOOD) return rc; page = short_pack(srb->cmnd[3], srb->cmnd[2]); page <<= 16; page |= short_pack(srb->cmnd[5], srb->cmnd[4]); pages = short_pack(srb->cmnd[8], srb->cmnd[7]); usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); return alauda_write_data(us, page, pages); } if (srb->cmnd[0] == REQUEST_SENSE) { usb_stor_dbg(us, "REQUEST_SENSE\n"); memset(ptr, 0, 18); ptr[0] = 0xF0; ptr[2] = info->sense_key; ptr[7] = 11; ptr[12] = info->sense_asc; ptr[13] = info->sense_ascq; usb_stor_set_xfer_buf(ptr, 18, srb); return USB_STOR_TRANSPORT_GOOD; } if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { /* * sure. whatever. not like we can stop the user from popping * the media out of the device (no locking doors, etc) */ return USB_STOR_TRANSPORT_GOOD; } usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", srb->cmnd[0], srb->cmnd[0]); info->sense_key = 0x05; info->sense_asc = 0x20; info->sense_ascq = 0x00; return USB_STOR_TRANSPORT_FAILED; } static struct scsi_host_template alauda_host_template; static int alauda_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct us_data *us; int result; result = usb_stor_probe1(&us, intf, id, (id - alauda_usb_ids) + alauda_unusual_dev_list, &alauda_host_template); if (result) return result; us->transport_name = "Alauda Control/Bulk"; us->transport = alauda_transport; us->transport_reset = usb_stor_Bulk_reset; us->max_lun = 1; result = usb_stor_probe2(us); return result; } static struct usb_driver alauda_driver = { .name = DRV_NAME, .probe = alauda_probe, .disconnect = usb_stor_disconnect, .suspend = usb_stor_suspend, .resume = usb_stor_resume, .reset_resume = usb_stor_reset_resume, .pre_reset = usb_stor_pre_reset, .post_reset = usb_stor_post_reset, .id_table = alauda_usb_ids, .soft_unbind = 1, .no_dynamic_id = 1, }; module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);