2019-06-19 16:26:12 -07:00
/* ----------------------------------------------------------------------------
Copyright ( c ) 2018 , Microsoft Research , Daan Leijen
This is free software ; you can redistribute it and / or modify it under the
terms of the MIT license . A copy of the license can be found in the file
2019-06-23 19:53:34 +08:00
" LICENSE " at the root of this distribution .
2019-06-19 16:26:12 -07:00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
# pragma once
2019-06-26 12:57:13 +08:00
# ifndef MIMALLOC_TYPES_H
# define MIMALLOC_TYPES_H
2019-06-19 16:26:12 -07:00
# include <stddef.h> // ptrdiff_t
# include <stdint.h> // uintptr_t, uint16_t, etc
2019-08-25 22:59:12 -07:00
# include <mimalloc-atomic.h> // _Atomic
2019-06-19 16:26:12 -07:00
2020-01-29 17:10:57 -08:00
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `MI_INTPTR_SIZE`
# define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
2019-06-19 16:26:12 -07:00
// ------------------------------------------------------
// Variants
// ------------------------------------------------------
// Define NDEBUG in the release version to disable assertions.
// #define NDEBUG
2019-06-24 01:40:28 +08:00
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
2019-06-19 16:26:12 -07:00
// #define MI_STAT 1
2019-10-18 18:11:04 -07:00
// Define MI_SECURE to enable security mitigations
// #define MI_SECURE 1 // guard page around metadata
// #define MI_SECURE 2 // guard page around each mimalloc page
2019-10-28 15:54:33 -07:00
// #define MI_SECURE 3 // encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free)
2019-11-21 15:21:23 -08:00
// #define MI_SECURE 4 // checks for double free. (may be more expensive)
2019-06-19 16:26:12 -07:00
2019-06-23 21:37:43 -07:00
# if !defined(MI_SECURE)
2020-01-02 17:57:41 -08:00
# define MI_SECURE 0
2019-06-19 16:26:12 -07:00
# endif
2019-10-28 15:54:33 -07:00
// Define MI_DEBUG for debug mode
// #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free.
// #define MI_DEBUG 2 // + internal assertion checks
2019-11-21 15:21:23 -08:00
// #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON)
2019-06-19 16:26:12 -07:00
# if !defined(MI_DEBUG)
# if !defined(NDEBUG) || defined(_DEBUG)
2019-10-28 15:54:33 -07:00
# define MI_DEBUG 2
2019-06-19 16:26:12 -07:00
# else
# define MI_DEBUG 0
# endif
# endif
2019-10-28 15:54:33 -07:00
// Encoded free lists allow detection of corrupted free lists
2020-01-31 23:39:51 -08:00
// and can detect buffer overflows, modify after free, and double `free`s.
2020-01-02 17:57:41 -08:00
# if (MI_SECURE>=3 || MI_DEBUG>=1)
2019-10-28 15:54:33 -07:00
# define MI_ENCODE_FREELIST 1
# endif
2019-06-19 16:26:12 -07:00
2020-01-31 20:34:24 -08:00
// Reserve extra padding at the end of each block to be more resilient against heap block overflows.
2020-01-31 23:39:51 -08:00
// If free lists are encoded, the padding can detect byte-precise buffer overflow on free.
2020-01-31 13:20:02 -08:00
# if (!defined(MI_PADDING) && (MI_SECURE>=3 || MI_DEBUG>=1))
2020-01-31 20:34:24 -08:00
# define MI_PADDING
2020-01-29 17:10:57 -08:00
# endif
2020-01-31 13:20:02 -08:00
2020-01-29 17:10:57 -08:00
2020-01-31 13:20:02 -08:00
2019-06-19 16:26:12 -07:00
// ------------------------------------------------------
// Platform specific values
// ------------------------------------------------------
// ------------------------------------------------------
// Size of a pointer.
// We assume that `sizeof(void*)==sizeof(intptr_t)`
// and it holds for all platforms we know of.
//
// However, the C standard only requires that:
// p == (void*)((intptr_t)p))
// but we also need:
// i == (intptr_t)((void*)i)
// or otherwise one might define an intptr_t type that is larger than a pointer...
// ------------------------------------------------------
# if INTPTR_MAX == 9223372036854775807LL
# define MI_INTPTR_SHIFT (3)
# elif INTPTR_MAX == 2147483647LL
# define MI_INTPTR_SHIFT (2)
# else
# error platform must be 32 or 64 bits
# endif
# define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT)
2019-12-22 17:07:01 -08:00
# define MI_INTPTR_BITS (MI_INTPTR_SIZE*8)
2019-06-19 16:26:12 -07:00
2019-09-10 13:26:51 -07:00
# define KiB ((size_t)1024)
# define MiB (KiB*KiB)
# define GiB (MiB*KiB)
2019-06-19 16:26:12 -07:00
2020-01-31 20:34:24 -08:00
2019-06-19 16:26:12 -07:00
// ------------------------------------------------------
// Main internal data-structures
// ------------------------------------------------------
// Main tuning parameters for segment and page sizes
// Sizes for 64-bit, divide by two for 32-bit
# define MI_SMALL_PAGE_SHIFT (13 + MI_INTPTR_SHIFT) // 64kb
2019-07-12 20:11:39 -07:00
# define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512kb
# define MI_LARGE_PAGE_SHIFT ( 3 + MI_MEDIUM_PAGE_SHIFT) // 4mb
2019-06-19 16:26:12 -07:00
# define MI_SEGMENT_SHIFT ( MI_LARGE_PAGE_SHIFT) // 4mb
// Derived constants
2019-11-07 10:26:52 -08:00
# define MI_SEGMENT_SIZE (1UL<<MI_SEGMENT_SHIFT)
2019-06-19 16:26:12 -07:00
# define MI_SEGMENT_MASK ((uintptr_t)MI_SEGMENT_SIZE - 1)
2019-11-07 10:26:52 -08:00
# define MI_SMALL_PAGE_SIZE (1UL<<MI_SMALL_PAGE_SHIFT)
# define MI_MEDIUM_PAGE_SIZE (1UL<<MI_MEDIUM_PAGE_SHIFT)
# define MI_LARGE_PAGE_SIZE (1UL<<MI_LARGE_PAGE_SHIFT)
2019-06-19 16:26:12 -07:00
# define MI_SMALL_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SMALL_PAGE_SIZE)
2019-07-12 20:11:39 -07:00
# define MI_MEDIUM_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_MEDIUM_PAGE_SIZE)
2019-06-19 16:26:12 -07:00
# define MI_LARGE_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_LARGE_PAGE_SIZE)
2019-08-25 10:01:11 -07:00
// The max object size are checked to not waste more than 12.5% internally over the page sizes.
// (Except for large pages since huge objects are allocated in 4MiB chunks)
# define MI_SMALL_OBJ_SIZE_MAX (MI_SMALL_PAGE_SIZE / 4) // 16kb
# define MI_MEDIUM_OBJ_SIZE_MAX (MI_MEDIUM_PAGE_SIZE / 4) // 128kb
2020-01-02 17:57:41 -08:00
# define MI_LARGE_OBJ_SIZE_MAX (MI_LARGE_PAGE_SIZE / 2) // 2mb
# define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX / MI_INTPTR_SIZE)
2019-08-25 10:01:11 -07:00
# define MI_HUGE_OBJ_SIZE_MAX (2*MI_INTPTR_SIZE*MI_SEGMENT_SIZE) // (must match MI_REGION_MAX_ALLOC_SIZE in memory.c)
2019-06-19 16:26:12 -07:00
2019-08-09 11:18:38 -07:00
// Maximum number of size classes. (spaced exponentially in 12.5% increments)
2019-08-10 20:51:37 -07:00
# define MI_BIN_HUGE (73U)
2019-08-09 11:18:38 -07:00
2019-08-16 18:40:30 -07:00
# if (MI_LARGE_OBJ_WSIZE_MAX >= 655360)
2019-08-09 11:18:38 -07:00
# error "define more bins"
# endif
2019-06-19 16:26:12 -07:00
2020-01-15 17:19:01 -08:00
// Used as a special value to encode block sizes in 32 bits.
# define MI_HUGE_BLOCK_SIZE ((uint32_t)MI_HUGE_OBJ_SIZE_MAX)
2019-10-28 15:54:33 -07:00
// The free lists use encoded next fields
// (Only actually encodes when MI_ENCODED_FREELIST is defined.)
2019-06-23 21:37:43 -07:00
typedef uintptr_t mi_encoded_t ;
2019-06-19 16:26:12 -07:00
// free lists contain blocks
typedef struct mi_block_s {
2019-06-23 21:37:43 -07:00
mi_encoded_t next ;
2019-06-19 16:26:12 -07:00
} mi_block_t ;
2019-10-28 15:54:33 -07:00
// The delayed flags are used for efficient multi-threaded free-ing
2019-06-19 16:26:12 -07:00
typedef enum mi_delayed_e {
2020-01-15 17:19:01 -08:00
MI_USE_DELAYED_FREE = 0 , // push on the owning heap thread delayed list
MI_DELAYED_FREEING = 1 , // temporary: another thread is accessing the owning heap
MI_NO_DELAYED_FREE = 2 , // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list
MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim
2019-06-19 16:26:12 -07:00
} mi_delayed_t ;
2020-01-02 17:57:41 -08:00
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
2019-10-17 16:48:16 -07:00
// test if both are false (`full_aligned == 0`) in the `mi_free` routine.
typedef union mi_page_flags_s {
uint8_t full_aligned ;
struct {
uint8_t in_full : 1 ;
uint8_t has_aligned : 1 ;
2020-01-02 17:57:41 -08:00
} x ;
2019-08-23 14:08:00 -07:00
} mi_page_flags_t ;
2019-08-08 15:23:18 -07:00
2019-06-19 16:26:12 -07:00
// Thread free list.
2019-07-22 20:51:12 -07:00
// We use the bottom 2 bits of the pointer for mi_delayed_t flags
2019-07-14 16:20:27 -07:00
typedef uintptr_t mi_thread_free_t ;
2019-06-19 16:26:12 -07:00
// A page contains blocks of one specific size (`block_size`).
// Each page has three list of free blocks:
// `free` for blocks that can be allocated,
// `local_free` for freed blocks that are not yet available to `mi_malloc`
// `thread_free` for freed blocks by other threads
// The `local_free` and `thread_free` lists are migrated to the `free` list
// when it is exhausted. The separate `local_free` list is necessary to
2019-06-23 00:09:11 +09:00
// implement a monotonic heartbeat. The `thread_free` list is needed for
2019-06-19 16:26:12 -07:00
// avoiding atomic operations in the common case.
//
//
2020-01-15 17:19:01 -08:00
// `used - |thread_free|` == actual blocks that are in use (alive)
// `used - |thread_free| + |free| + |local_free| == capacity`
//
// We don't count `freed` (as |free|) but use `used` to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
//
// Notes:
// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`)
// - Using `uint16_t` does not seem to slow things down
// - The size is 8 words on 64-bit which helps the page index calculations
// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
// and 12 are still good for address calculation)
// - To limit the structure size, the `xblock_size` is 32-bits only; for
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
// concurrent frees where only the first concurrent free adds to the owning
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
// The invariant is that no-delayed-free is only set if there is
// at least one block that will be added, or as already been added, to
// the owning heap `thread_delayed_free` list. This guarantees that pages
// will be freed correctly even if only other threads free blocks.
2019-06-19 16:26:12 -07:00
typedef struct mi_page_s {
// "owned" by the segment
uint8_t segment_idx ; // index in the segment `pages` array, `page == &segment->pages[page->segment_idx]`
2019-10-17 12:07:26 -07:00
uint8_t segment_in_use : 1 ; // `true` if the segment allocated this page
uint8_t is_reset : 1 ; // `true` if the page memory was reset
uint8_t is_committed : 1 ; // `true` if the page virtual memory is committed
uint8_t is_zero_init : 1 ; // `true` if the page was zero initialized
2020-01-02 17:57:41 -08:00
2019-08-09 11:18:38 -07:00
// layout like this to optimize access in `mi_malloc` and `mi_free`
2019-08-26 22:45:26 -07:00
uint16_t capacity ; // number of blocks committed, must be the first field, see `segment.c:page_clear`
2019-07-10 08:38:58 +08:00
uint16_t reserved ; // number of blocks reserved in memory
2019-10-17 16:48:16 -07:00
mi_page_flags_t flags ; // `in_full` and `has_aligned` flags (8 bits)
2020-01-03 17:06:41 -08:00
uint8_t is_zero : 1 ; // `true` if the blocks in the free list are zero initialized
uint8_t retire_expire : 7 ; // expiration count for retired blocks
2019-08-23 14:08:00 -07:00
2019-06-19 16:26:12 -07:00
mi_block_t * free ; // list of available free blocks (`malloc` allocates from this list)
2019-10-28 15:54:33 -07:00
# ifdef MI_ENCODE_FREELIST
2019-12-27 23:33:50 -08:00
uintptr_t key [ 2 ] ; // two random keys to encode the free lists (see `_mi_block_next`)
2019-07-22 20:51:12 -07:00
# endif
2020-01-15 17:19:01 -08:00
uint32_t used ; // number of blocks in use (including blocks in `local_free` and `thread_free`)
uint32_t xblock_size ; // size available in each block (always `>0`)
2020-01-02 17:57:41 -08:00
2019-06-19 16:26:12 -07:00
mi_block_t * local_free ; // list of deferred free blocks by this thread (migrates to `free`)
2020-01-15 17:19:01 -08:00
volatile _Atomic ( mi_thread_free_t ) xthread_free ; // list of deferred free blocks freed by other threads
volatile _Atomic ( uintptr_t ) xheap ;
2019-06-19 16:26:12 -07:00
struct mi_page_s * next ; // next page owned by this thread with the same `block_size`
struct mi_page_s * prev ; // previous page owned by this thread with the same `block_size`
} mi_page_t ;
typedef enum mi_page_kind_e {
MI_PAGE_SMALL , // small blocks go into 64kb pages inside a segment
2019-07-12 20:11:39 -07:00
MI_PAGE_MEDIUM , // medium blocks go into 512kb pages inside a segment
2019-06-19 16:26:12 -07:00
MI_PAGE_LARGE , // larger blocks go into a single page spanning a whole segment
MI_PAGE_HUGE // huge blocks (>512kb) are put into a single page in a segment of the exact size (but still 2mb aligned)
} mi_page_kind_t ;
// Segments are large allocated memory blocks (2mb on 64 bit) from
// the OS. Inside segments we allocated fixed size _pages_ that
// contain blocks.
typedef struct mi_segment_s {
2019-08-26 22:45:26 -07:00
// memory fields
size_t memid ; // id for the os-level memory manager
2020-01-02 17:57:41 -08:00
bool mem_is_fixed ; // `true` if we cannot decommit/reset/protect in this memory (i.e. when allocated using large OS pages)
2019-08-26 22:45:26 -07:00
bool mem_is_committed ; // `true` if the whole segment is eagerly committed
// segment fields
2020-01-25 12:26:08 -08:00
struct mi_segment_s * next ; // must be the first segment field -- see `segment.c:segment_alloc`
2019-06-19 16:26:12 -07:00
struct mi_segment_s * prev ;
2020-01-08 17:45:38 -08:00
struct mi_segment_s * abandoned_next ;
2020-01-25 12:26:08 -08:00
size_t abandoned ; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
size_t abandoned_visits ; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long)
2019-06-19 16:26:12 -07:00
size_t used ; // count of pages in use (`used <= capacity`)
size_t capacity ; // count of available pages (`#free + used`)
size_t segment_size ; // for huge pages this may be different from `MI_SEGMENT_SIZE`
size_t segment_info_size ; // space we are using from the first page for segment meta-data and possible guard pages.
2019-12-27 23:33:50 -08:00
uintptr_t cookie ; // verify addresses in secure mode: `_mi_ptr_cookie(segment) == segment->cookie`
2020-01-02 17:57:41 -08:00
2019-06-19 16:26:12 -07:00
// layout like this to optimize access in `mi_free`
size_t page_shift ; // `1 << page_shift` == the page sizes == `page->block_size * page->reserved` (unless the first page, then `-segment_info_size`).
2019-08-25 22:59:12 -07:00
volatile _Atomic ( uintptr_t ) thread_id ; // unique id of the thread owning this segment
2019-06-19 16:26:12 -07:00
mi_page_kind_t page_kind ; // kind of pages: small, large, or huge
mi_page_t pages [ 1 ] ; // up to `MI_SMALL_PAGES_PER_SEGMENT` pages
} mi_segment_t ;
// ------------------------------------------------------
// Heaps
// Provide first-class heaps to allocate from.
// A heap just owns a set of pages for allocation and
// can only be allocate/reallocate from the thread that created it.
// Freeing blocks can be done from any thread though.
// Per thread, the segments are shared among its heaps.
// Per thread, there is always a default heap that is
// used for allocation; it is initialized to statically
// point to an empty heap to avoid initialization checks
// in the fast path.
// ------------------------------------------------------
// Thread local data
typedef struct mi_tld_s mi_tld_t ;
// Pages of a certain block size are held in a queue.
typedef struct mi_page_queue_s {
mi_page_t * first ;
mi_page_t * last ;
size_t block_size ;
} mi_page_queue_t ;
# define MI_BIN_FULL (MI_BIN_HUGE+1)
2019-12-22 17:07:01 -08:00
// Random context
typedef struct mi_random_cxt_s {
uint32_t input [ 16 ] ;
uint32_t output [ 16 ] ;
int output_available ;
} mi_random_ctx_t ;
2020-01-31 23:39:51 -08:00
// In debug mode there is a padding stucture at the end of the blocks to check for buffer overflows
# if defined(MI_PADDING)
typedef struct mi_padding_s {
uint32_t block ; // (encoded) lower 32 bits of the block address. (to check validity of the block)
uint32_t delta ; // (encoded) padding bytes before the block. (mi_usable_size(p) - decode(delta) == exact allocated bytes)
} mi_padding_t ;
# define MI_PADDING_SIZE (sizeof(mi_padding_t))
# define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE)
# else
# define MI_PADDING_SIZE 0
# define MI_PADDING_WSIZE 0
# endif
# define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1)
2019-12-22 17:07:01 -08:00
2019-06-19 16:26:12 -07:00
// A heap owns a set of pages.
struct mi_heap_s {
mi_tld_t * tld ;
2020-01-31 20:34:24 -08:00
mi_page_t * pages_free_direct [ MI_PAGES_DIRECT ] ; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages [ MI_BIN_FULL + 1 ] ; // queue of pages for each size class (or "bin")
2019-08-25 22:59:12 -07:00
volatile _Atomic ( mi_block_t * ) thread_delayed_free ;
2020-01-31 20:34:24 -08:00
uintptr_t thread_id ; // thread this heap belongs too
uintptr_t cookie ; // random cookie to verify pointers (see `_mi_ptr_cookie`)
uintptr_t key [ 2 ] ; // two random keys used to encode the `thread_delayed_free` list
mi_random_ctx_t random ; // random number context used for secure allocation
size_t page_count ; // total number of pages in the `pages` queues.
bool no_reclaim ; // `true` if this heap should not reclaim abandoned pages
2019-06-19 16:26:12 -07:00
} ;
// ------------------------------------------------------
// Debug
// ------------------------------------------------------
# define MI_DEBUG_UNINIT (0xD0)
# define MI_DEBUG_FREED (0xDF)
2020-01-31 23:39:51 -08:00
# define MI_DEBUG_PADDING (0xDE)
2019-06-19 16:26:12 -07:00
# if (MI_DEBUG)
// use our own assertion to print without memory allocation
void _mi_assert_fail ( const char * assertion , const char * fname , unsigned int line , const char * func ) ;
# define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__))
# else
# define mi_assert(x)
# endif
# if (MI_DEBUG>1)
# define mi_assert_internal mi_assert
# else
# define mi_assert_internal(x)
# endif
# if (MI_DEBUG>2)
# define mi_assert_expensive mi_assert
# else
# define mi_assert_expensive(x)
# endif
// ------------------------------------------------------
// Statistics
// ------------------------------------------------------
# ifndef MI_STAT
# if (MI_DEBUG>0)
# define MI_STAT 2
# else
# define MI_STAT 0
# endif
# endif
typedef struct mi_stat_count_s {
int64_t allocated ;
int64_t freed ;
int64_t peak ;
int64_t current ;
} mi_stat_count_t ;
typedef struct mi_stat_counter_s {
int64_t total ;
int64_t count ;
} mi_stat_counter_t ;
typedef struct mi_stats_s {
mi_stat_count_t segments ;
mi_stat_count_t pages ;
mi_stat_count_t reserved ;
mi_stat_count_t committed ;
mi_stat_count_t reset ;
2019-07-02 07:23:24 -07:00
mi_stat_count_t page_committed ;
2019-06-19 16:26:12 -07:00
mi_stat_count_t segments_abandoned ;
mi_stat_count_t pages_abandoned ;
mi_stat_count_t threads ;
mi_stat_count_t huge ;
2019-08-10 20:51:37 -07:00
mi_stat_count_t giant ;
2019-06-19 16:26:12 -07:00
mi_stat_count_t malloc ;
2019-08-08 11:36:13 -07:00
mi_stat_count_t segments_cache ;
2019-10-28 13:43:42 -07:00
mi_stat_counter_t pages_extended ;
mi_stat_counter_t mmap_calls ;
mi_stat_counter_t commit_calls ;
2019-08-08 11:36:13 -07:00
mi_stat_counter_t page_no_retire ;
2019-06-19 16:26:12 -07:00
mi_stat_counter_t searches ;
2019-08-10 20:51:37 -07:00
mi_stat_counter_t huge_count ;
mi_stat_counter_t giant_count ;
2019-06-19 16:26:12 -07:00
# if MI_STAT>1
mi_stat_count_t normal [ MI_BIN_HUGE + 1 ] ;
# endif
} mi_stats_t ;
void _mi_stat_increase ( mi_stat_count_t * stat , size_t amount ) ;
void _mi_stat_decrease ( mi_stat_count_t * stat , size_t amount ) ;
void _mi_stat_counter_increase ( mi_stat_counter_t * stat , size_t amount ) ;
# if (MI_STAT)
# define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount)
# define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount)
# define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount)
# else
# define mi_stat_increase(stat,amount) (void)0
# define mi_stat_decrease(stat,amount) (void)0
# define mi_stat_counter_increase(stat,amount) (void)0
# endif
# define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount)
# define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount)
// ------------------------------------------------------
// Thread Local data
// ------------------------------------------------------
2019-11-20 14:55:12 -08:00
typedef int64_t mi_msecs_t ;
2019-06-19 16:26:12 -07:00
// Queue of segments
typedef struct mi_segment_queue_s {
mi_segment_t * first ;
mi_segment_t * last ;
} mi_segment_queue_t ;
2019-11-04 11:48:41 -08:00
// OS thread local data
typedef struct mi_os_tld_s {
2019-11-20 14:55:12 -08:00
size_t region_idx ; // start point for next allocation
mi_stats_t * stats ; // points to tld stats
2019-11-04 11:48:41 -08:00
} mi_os_tld_t ;
2019-06-19 16:26:12 -07:00
// Segments thread local data
typedef struct mi_segments_tld_s {
mi_segment_queue_t small_free ; // queue of segments with free small pages
2019-07-12 20:11:39 -07:00
mi_segment_queue_t medium_free ; // queue of segments with free medium pages
2020-01-15 12:00:44 -08:00
mi_page_queue_t pages_reset ; // queue of freed pages that can be reset
2019-07-02 07:23:24 -07:00
size_t count ; // current number of segments;
size_t peak_count ; // peak number of segments
2019-06-23 23:15:42 -07:00
size_t current_size ; // current size of all segments
size_t peak_size ; // peak size of all segments
2019-06-19 16:26:12 -07:00
size_t cache_count ; // number of segments in the cache
2019-06-23 23:15:42 -07:00
size_t cache_size ; // total size of all segments in the cache
2019-07-02 07:23:24 -07:00
mi_segment_t * cache ; // (small) cache of segments
2019-06-19 16:26:12 -07:00
mi_stats_t * stats ; // points to tld stats
2019-11-04 11:48:41 -08:00
mi_os_tld_t * os ; // points to os stats
2019-06-19 16:26:12 -07:00
} mi_segments_tld_t ;
// Thread local data
struct mi_tld_s {
unsigned long long heartbeat ; // monotonic heartbeat count
2019-09-09 08:02:41 -07:00
bool recurse ; // true if deferred was called; used to prevent infinite recursion.
2019-06-19 16:26:12 -07:00
mi_heap_t * heap_backing ; // backing heap of this thread (cannot be deleted)
2019-06-23 21:37:43 -07:00
mi_segments_tld_t segments ; // segment tld
2019-06-19 16:26:12 -07:00
mi_os_tld_t os ; // os tld
mi_stats_t stats ; // statistics
} ;
# endif