mirror of
https://github.com/microsoft/mimalloc.git
synced 2024-12-26 21:04:27 +08:00
Initial commit of separate memory region layer and improved large OS pages support, see 'memory.c'
This commit is contained in:
parent
d6901558cd
commit
06bcea1761
@ -15,6 +15,7 @@ set(mi_install_dir "lib/mimalloc-${mi_version}")
|
||||
set(mi_sources
|
||||
src/stats.c
|
||||
src/os.c
|
||||
src/memory.c
|
||||
src/segment.c
|
||||
src/page.c
|
||||
src/alloc.c
|
||||
|
@ -225,6 +225,7 @@
|
||||
<ClCompile Include="..\..\src\alloc.c" />
|
||||
<ClCompile Include="..\..\src\heap.c" />
|
||||
<ClCompile Include="..\..\src\init.c" />
|
||||
<ClCompile Include="..\..\src\memory.c" />
|
||||
<ClCompile Include="..\..\src\options.c" />
|
||||
<ClCompile Include="..\..\src\os.c" />
|
||||
<ClCompile Include="..\..\src\page-queue.c">
|
||||
|
@ -58,5 +58,8 @@
|
||||
<ClCompile Include="..\..\src\init.c">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\..\src\memory.c">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
</Project>
|
@ -224,6 +224,7 @@
|
||||
<ClCompile Include="..\..\src\alloc.c" />
|
||||
<ClCompile Include="..\..\src\heap.c" />
|
||||
<ClCompile Include="..\..\src\init.c" />
|
||||
<ClCompile Include="..\..\src\memory.c" />
|
||||
<ClCompile Include="..\..\src\options.c" />
|
||||
<ClCompile Include="..\..\src\page-queue.c">
|
||||
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
|
||||
|
@ -50,6 +50,9 @@
|
||||
<ClCompile Include="..\..\src\init.c">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\..\src\memory.c">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="$(ProjectDir)..\..\include\mimalloc.h">
|
||||
|
@ -39,6 +39,15 @@ static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t e
|
||||
// Atomically exchange a value.
|
||||
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange);
|
||||
|
||||
// Atomically read a value
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p);
|
||||
|
||||
// Atomically read a pointer
|
||||
static inline void* mi_atomic_read_ptr(volatile void** p);
|
||||
|
||||
// Atomically write a value
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x);
|
||||
|
||||
static inline void mi_atomic_yield(void);
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful.
|
||||
@ -85,6 +94,15 @@ static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t e
|
||||
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange) {
|
||||
return (uintptr_t)RC64(_InterlockedExchange)((volatile intptr_t*)p, (intptr_t)exchange);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
|
||||
return *p;
|
||||
}
|
||||
static inline void* mi_atomic_read_ptr(volatile void** p) {
|
||||
return (void*)(*p);
|
||||
}
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
|
||||
*p = x;
|
||||
}
|
||||
static inline void mi_atomic_yield(void) {
|
||||
YieldProcessor();
|
||||
}
|
||||
@ -147,6 +165,18 @@ static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exch
|
||||
MI_USING_STD
|
||||
return atomic_exchange_explicit((volatile atomic_uintptr_t*)p, exchange, memory_order_relaxed);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
|
||||
MI_USING_STD
|
||||
return atomic_load_explicit((volatile atomic_uintptr_t*)p, memory_order_relaxed);
|
||||
}
|
||||
static inline void* mi_atomic_read_ptr(volatile void** p) {
|
||||
MI_USING_STD
|
||||
return atomic_load_explicit((volatile _Atomic(void*)*)p, memory_order_relaxed);
|
||||
}
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
|
||||
MI_USING_STD
|
||||
return atomic_store_explicit((volatile atomic_uintptr_t*)p, x, memory_order_relaxed);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
#include <thread>
|
||||
|
@ -29,18 +29,21 @@ uintptr_t _mi_ptr_cookie(const void* p);
|
||||
uintptr_t _mi_random_shuffle(uintptr_t x);
|
||||
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
|
||||
|
||||
// "os.c"
|
||||
bool _mi_os_reset(void* p, size_t size);
|
||||
void* _mi_os_alloc(size_t size, mi_stats_t* stats);
|
||||
bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize);
|
||||
void _mi_os_free(void* p, size_t size, mi_stats_t* stats);
|
||||
bool _mi_os_protect(void* addr, size_t size);
|
||||
bool _mi_os_unprotect(void* addr, size_t size);
|
||||
void _mi_os_init(void); // called from process init
|
||||
|
||||
void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld);
|
||||
// os.c
|
||||
size_t _mi_os_page_size(void);
|
||||
uintptr_t _mi_align_up(uintptr_t sz, size_t alignment);
|
||||
void _mi_os_init(void); // called from process init
|
||||
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
|
||||
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
|
||||
|
||||
// memory.c
|
||||
void* _mi_mem_alloc_aligned(size_t size, size_t alignment, size_t* id, mi_os_tld_t* tld);
|
||||
void* _mi_mem_alloc(size_t size, size_t* id, mi_os_tld_t* tld);
|
||||
void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats);
|
||||
|
||||
bool _mi_mem_reset(void* p, size_t size, mi_stats_t* stats);
|
||||
bool _mi_mem_protect(void* addr, size_t size);
|
||||
bool _mi_mem_unprotect(void* addr, size_t size);
|
||||
|
||||
// "segment.c"
|
||||
mi_page_t* _mi_segment_page_alloc(size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
|
||||
|
@ -89,7 +89,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#define MI_SMALL_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE/MI_SMALL_PAGE_SIZE)
|
||||
#define MI_LARGE_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE/MI_LARGE_PAGE_SIZE)
|
||||
|
||||
#define MI_LARGE_SIZE_MAX (MI_LARGE_PAGE_SIZE/8) // 512kb on 64-bit
|
||||
#define MI_LARGE_SIZE_MAX (MI_LARGE_PAGE_SIZE/4) // 1MiB on 64-bit
|
||||
#define MI_LARGE_WSIZE_MAX (MI_LARGE_SIZE_MAX>>MI_INTPTR_SHIFT)
|
||||
|
||||
|
||||
@ -215,6 +215,7 @@ typedef struct mi_segment_s {
|
||||
size_t segment_size;// for huge pages this may be different from `MI_SEGMENT_SIZE`
|
||||
size_t segment_info_size; // space we are using from the first page for segment meta-data and possible guard pages.
|
||||
uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie`
|
||||
size_t memid; // id for the os-level memory manager
|
||||
|
||||
// layout like this to optimize access in `mi_free`
|
||||
size_t page_shift; // `1 << page_shift` == the page sizes == `page->block_size * page->reserved` (unless the first page, then `-segment_info_size`).
|
||||
@ -322,12 +323,14 @@ typedef struct mi_stats_s {
|
||||
mi_stat_count_t reserved;
|
||||
mi_stat_count_t committed;
|
||||
mi_stat_count_t reset;
|
||||
mi_stat_count_t page_committed;
|
||||
mi_stat_count_t segments_abandoned;
|
||||
mi_stat_count_t pages_abandoned;
|
||||
mi_stat_count_t pages_extended;
|
||||
mi_stat_count_t mmap_calls;
|
||||
mi_stat_count_t mmap_right_align;
|
||||
mi_stat_count_t mmap_ensure_aligned;
|
||||
mi_stat_count_t commit_calls;
|
||||
mi_stat_count_t threads;
|
||||
mi_stat_count_t huge;
|
||||
mi_stat_count_t malloc;
|
||||
@ -370,11 +373,13 @@ typedef struct mi_segment_queue_s {
|
||||
// Segments thread local data
|
||||
typedef struct mi_segments_tld_s {
|
||||
mi_segment_queue_t small_free; // queue of segments with free small pages
|
||||
size_t count; // current number of segments;
|
||||
size_t peak_count; // peak number of segments
|
||||
size_t current_size; // current size of all segments
|
||||
size_t peak_size; // peak size of all segments
|
||||
size_t cache_count; // number of segments in the cache
|
||||
size_t cache_size; // total size of all segments in the cache
|
||||
mi_segment_queue_t cache; // (small) cache of segments for small and large pages (to avoid repeated mmap calls)
|
||||
mi_segment_t* cache; // (small) cache of segments
|
||||
mi_stats_t* stats; // points to tld stats
|
||||
} mi_segments_tld_t;
|
||||
|
||||
|
@ -215,8 +215,8 @@ mi_decl_export bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_all_b
|
||||
typedef enum mi_option_e {
|
||||
mi_option_page_reset,
|
||||
mi_option_cache_reset,
|
||||
mi_option_pool_commit,
|
||||
mi_option_large_os_pages,
|
||||
mi_option_eager_commit,
|
||||
mi_option_large_os_pages, // implies eager commit
|
||||
mi_option_secure,
|
||||
mi_option_show_stats,
|
||||
mi_option_show_errors,
|
||||
|
@ -58,6 +58,7 @@ const mi_page_t _mi_page_empty = {
|
||||
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
|
||||
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
|
||||
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
|
||||
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
|
||||
{ 0, 0 } \
|
||||
MI_STAT_COUNT_END_NULL()
|
||||
|
||||
@ -90,7 +91,7 @@ mi_decl_thread mi_heap_t* _mi_heap_default = (mi_heap_t*)&_mi_heap_empty;
|
||||
static mi_tld_t tld_main = {
|
||||
0,
|
||||
&_mi_heap_main,
|
||||
{ { NULL, NULL }, 0, 0, 0, 0, {NULL,NULL}, tld_main_stats }, // segments
|
||||
{ { NULL, NULL }, 0, 0, 0, 0, 0, 0, NULL, tld_main_stats }, // segments
|
||||
{ 0, NULL, NULL, 0, tld_main_stats }, // os
|
||||
{ MI_STATS_NULL } // stats
|
||||
};
|
||||
|
349
src/memory.c
Normal file
349
src/memory.c
Normal file
@ -0,0 +1,349 @@
|
||||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
This implements a layer between the raw OS memory (VirtualAlloc/mmap/sbrk/..)
|
||||
and the segment and huge object allocation by mimalloc. In contrast to the
|
||||
rest of mimalloc, this uses thread-shared "regions" that are accessed using
|
||||
atomic operations. We need this layer because of:
|
||||
1. on `sbrk` like systems (like WebAssembly) we need our own memory maps in order
|
||||
to reuse memory
|
||||
2. It turns out that for large objects, between 1MiB and 32MiB (?), the cost of
|
||||
an OS allocation/free is still too expensive relative to the accesses in that
|
||||
object :-( (`mallloc-large` tests this). This means we need a cheaper way to
|
||||
reuse memory.
|
||||
3. This layer can help with a NUMA aware allocation in the future.
|
||||
|
||||
Possible issues:
|
||||
- (2) can potentially be addressed too with a small cache per thread which is much
|
||||
simpler. Generally though that requires shrinking of huge pages, and may overuse
|
||||
memory per thread. (and is not compatible with `sbrk`).
|
||||
- Since the current regions are per-process, we need atomic operations to
|
||||
claim blocks which may be contended
|
||||
- In the worst case, we need to search the whole region map (16KiB for 256GiB)
|
||||
linearly. At what point will direct OS calls be faster? Is there a way to
|
||||
do this better without adding too much complexity?
|
||||
-----------------------------------------------------------------------------*/
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc-internal.h"
|
||||
#include "mimalloc-atomic.h"
|
||||
|
||||
#include <string.h> // memset
|
||||
|
||||
// Internal OS interface
|
||||
size_t _mi_os_large_page_size();
|
||||
bool _mi_os_protect(void* addr, size_t size);
|
||||
bool _mi_os_unprotect(void* addr, size_t size);
|
||||
bool _mi_os_commit(void* p, size_t size, mi_stats_t* stats);
|
||||
bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats);
|
||||
bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats);
|
||||
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld_t* tld);
|
||||
|
||||
|
||||
// Constants
|
||||
#if (MI_INTPTR_SIZE==8)
|
||||
#define MI_HEAP_REGION_MAX_SIZE (256 * (1ULL << 30)) // 256GiB => 16KiB for the region map
|
||||
#elif (MI_INTPTR_SIZE==4)
|
||||
#define MI_HEAP_REGION_MAX_SIZE (3 * (1UL << 30)) // 3GiB => 196 bytes for the region map
|
||||
#else
|
||||
#error "define the maximum heap space allowed for regions on this platform"
|
||||
#endif
|
||||
|
||||
#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE
|
||||
|
||||
#define MI_REGION_MAP_BITS (MI_INTPTR_SIZE * 8)
|
||||
#define MI_REGION_SIZE (MI_SEGMENT_SIZE * MI_REGION_MAP_BITS)
|
||||
#define MI_REGION_MAX_ALLOC_SIZE ((MI_REGION_MAP_BITS/4)*MI_SEGMENT_SIZE) // 64MiB
|
||||
#define MI_REGION_MAX (MI_HEAP_REGION_MAX_SIZE / MI_REGION_SIZE)
|
||||
#define MI_REGION_MAP_FULL UINTPTR_MAX
|
||||
|
||||
|
||||
// A region owns a chunk of REGION_SIZE (256MiB) (virtual) memory with
|
||||
// a bit map with one bit per MI_SEGMENT_SIZE (4MiB) block.
|
||||
typedef struct mem_region_s {
|
||||
volatile uintptr_t map; // in-use bit per MI_SEGMENT_SIZE block
|
||||
volatile void* start; // start of virtual memory area
|
||||
} mem_region_t;
|
||||
|
||||
|
||||
// The region map; 16KiB for a 256GiB HEAP_REGION_MAX
|
||||
// TODO: in the future, maintain a map per NUMA node for numa aware allocation
|
||||
static mem_region_t regions[MI_REGION_MAX];
|
||||
|
||||
static volatile size_t regions_count = 0; // allocated regions
|
||||
static volatile uintptr_t region_next_idx = 0;
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Utility functions
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
// Blocks (of 4MiB) needed for the given size.
|
||||
static size_t mi_region_block_count(size_t size) {
|
||||
mi_assert_internal(size <= MI_REGION_MAX_ALLOC_SIZE);
|
||||
return (size + MI_SEGMENT_SIZE - 1) / MI_SEGMENT_SIZE;
|
||||
}
|
||||
|
||||
// The bit mask for a given number of blocks at a specified bit index.
|
||||
static uintptr_t mi_region_block_mask(size_t blocks, size_t bitidx) {
|
||||
mi_assert_internal(blocks + bitidx <= MI_REGION_MAP_BITS);
|
||||
return ((((uintptr_t)1 << blocks) - 1) << bitidx);
|
||||
}
|
||||
|
||||
// Return a rounded commit/reset size such that we don't fragment large OS pages into small ones.
|
||||
static size_t mi_good_commit_size(size_t size) {
|
||||
if (size > (SIZE_MAX - _mi_os_large_page_size())) return size;
|
||||
return _mi_align_up(size, _mi_os_large_page_size());
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Commit from a region
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
// Commit the `blocks` in `region` at `idx` and `bitidx` of a given `size`.
|
||||
// Returns `false` on an error (OOM); `true` otherwise. `p` and `id` are only written
|
||||
// if the blocks were successfully claimed so ensure they are initialized to NULL/SIZE_MAX before the call.
|
||||
// (not being able to claim is not considered an error so check for `p != NULL` afterwards).
|
||||
static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bitidx, size_t blocks, size_t size, void** p, size_t* id, mi_os_tld_t* tld) {
|
||||
size_t mask = mi_region_block_mask(blocks,bitidx);
|
||||
mi_assert_internal(mask != 0);
|
||||
mi_assert_internal((mask & mi_atomic_read(®ion->map)) == mask);
|
||||
|
||||
// ensure the region is reserved
|
||||
void* start = mi_atomic_read_ptr(®ion->start);
|
||||
if (start == NULL) {
|
||||
start = _mi_os_alloc_aligned(MI_REGION_SIZE, MI_SEGMENT_ALIGN, mi_option_is_enabled(mi_option_eager_commit), tld);
|
||||
if (start == NULL) {
|
||||
// failure to allocate from the OS! unclaim the blocks and fail
|
||||
size_t map;
|
||||
do {
|
||||
map = mi_atomic_read(®ion->map);
|
||||
} while (!mi_atomic_compare_exchange(®ion->map, map & ~mask, map));
|
||||
return false;
|
||||
}
|
||||
// set the newly allocated region
|
||||
if (mi_atomic_compare_exchange_ptr(®ion->start, start, NULL)) {
|
||||
// update the region count
|
||||
mi_atomic_increment(®ions_count);
|
||||
}
|
||||
else {
|
||||
// failed, another thread allocated just before us, free our allocated memory
|
||||
// TODO: should we keep the allocated memory and assign it to some other region?
|
||||
_mi_os_free(start, MI_REGION_SIZE, tld->stats);
|
||||
start = mi_atomic_read_ptr(®ion->start);
|
||||
}
|
||||
}
|
||||
|
||||
// Commit the blocks to memory
|
||||
mi_assert_internal(start == mi_atomic_read_ptr(®ion->start));
|
||||
mi_assert_internal(start != NULL);
|
||||
void* blocks_start = (uint8_t*)start + (bitidx * MI_SEGMENT_SIZE);
|
||||
if (!mi_option_is_enabled(mi_option_eager_commit)) {
|
||||
_mi_os_commit(blocks_start, mi_good_commit_size(size), tld->stats); // only commit needed size (unless using large OS pages)
|
||||
}
|
||||
|
||||
// and return the allocation
|
||||
mi_atomic_write(®ion_next_idx,idx); // next search from here
|
||||
*p = blocks_start;
|
||||
*id = (idx*MI_REGION_MAP_BITS) + bitidx;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Allocate `blocks` in a `region` at `idx` of a given `size`.
|
||||
// Returns `false` on an error (OOM); `true` otherwise. `p` and `id` are only written
|
||||
// if the blocks were successfully claimed so ensure they are initialized to NULL/SIZE_MAX before the call.
|
||||
// (not being able to claim is not considered an error so check for `p != NULL` afterwards).
|
||||
static bool mi_region_alloc_blocks(mem_region_t* region, size_t idx, size_t blocks, size_t size, void** p, size_t* id, mi_os_tld_t* tld) {
|
||||
mi_assert_internal(p != NULL && id != NULL);
|
||||
mi_assert_internal(blocks < MI_REGION_MAP_BITS);
|
||||
|
||||
const uintptr_t mask = mi_region_block_mask(blocks,0);
|
||||
const size_t bitidx_max = MI_REGION_MAP_BITS - blocks;
|
||||
size_t bitidx = 0;
|
||||
uintptr_t map;
|
||||
uintptr_t newmap;
|
||||
do { // while no atomic claim success and not all bits seen
|
||||
// find the first free range of bits
|
||||
map = mi_atomic_read(®ion->map);
|
||||
size_t m = map;
|
||||
do {
|
||||
// skip ones
|
||||
while ((m&1) == 1) { bitidx++; m>>=1; }
|
||||
// count zeros
|
||||
mi_assert_internal((m&1)==0);
|
||||
size_t zeros = 1;
|
||||
m >>= 1;
|
||||
while(zeros < blocks && (m&1)==0) { zeros++; m>>=1; }
|
||||
if (zeros == blocks) break; // found a range that fits
|
||||
bitidx += zeros;
|
||||
}
|
||||
while(bitidx <= bitidx_max);
|
||||
if (bitidx > bitidx_max) {
|
||||
return true; // no error, but could not find a range either
|
||||
}
|
||||
|
||||
// try to claim it
|
||||
mi_assert_internal( (mask << bitidx) >> bitidx == mask ); // no overflow?
|
||||
mi_assert_internal( (map & (mask << bitidx)) == 0); // fits in zero range
|
||||
newmap = map | (mask << bitidx);
|
||||
mi_assert_internal((newmap^map) >> bitidx == mask);
|
||||
}
|
||||
while(!mi_atomic_compare_exchange(®ion->map, newmap, map));
|
||||
|
||||
// success, we claimed the blocks atomically
|
||||
// now commit the block memory -- this can still fail
|
||||
return mi_region_commit_blocks(region, idx, bitidx, blocks, size, p, id, tld);
|
||||
}
|
||||
|
||||
// Try to allocate `blocks` in a `region` at `idx` of a given `size`. Does a quick check before trying to claim.
|
||||
// Returns `false` on an error (OOM); `true` otherwise. `p` and `id` are only written
|
||||
// if the blocks were successfully claimed so ensure they are initialized to NULL/0 before the call.
|
||||
// (not being able to claim is not considered an error so check for `p != NULL` afterwards).
|
||||
static bool mi_region_try_alloc_blocks(size_t idx, size_t blocks, size_t size, void** p, size_t* id, mi_os_tld_t* tld)
|
||||
{
|
||||
// check if there are available blocks in the region..
|
||||
mi_assert_internal(idx < MI_REGION_MAX);
|
||||
mem_region_t* region = ®ions[idx];
|
||||
uintptr_t m = mi_atomic_read(®ion->map);
|
||||
if (m != MI_REGION_MAP_FULL) { // some bits are zero
|
||||
return mi_region_alloc_blocks(region, idx, blocks, size, p, id, tld);
|
||||
}
|
||||
else {
|
||||
return true; // no error, but no success either
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Allocation
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
// Allocate `size` memory aligned at `alignment`. Return non NULL on success, with a given memory `id`.
|
||||
// (`id` is abstract, but `id = idx*MI_REGION_MAP_BITS + bitidx`)
|
||||
void* _mi_mem_alloc_aligned(size_t size, size_t alignment, size_t* id, mi_os_tld_t* tld)
|
||||
{
|
||||
mi_assert_internal(id != NULL && tld != NULL);
|
||||
mi_assert_internal(size > 0);
|
||||
*id = SIZE_MAX;
|
||||
|
||||
// use direct OS allocation for huge blocks or alignment (with `id = SIZE_MAX`)
|
||||
if (size > MI_REGION_MAX_ALLOC_SIZE || alignment > MI_SEGMENT_ALIGN) {
|
||||
return _mi_os_alloc_aligned(mi_good_commit_size(size), alignment, true, tld); // round up size
|
||||
}
|
||||
|
||||
// always round size to OS page size multiple (so commit/decommit go over the entire range)
|
||||
// TODO: use large OS page size here?
|
||||
size = _mi_align_up(size, _mi_os_page_size());
|
||||
|
||||
// calculate the number of needed blocks
|
||||
size_t blocks = mi_region_block_count(size);
|
||||
mi_assert_internal(blocks > 0 && blocks <= 8*MI_INTPTR_SIZE);
|
||||
|
||||
// find a range of free blocks
|
||||
void* p = NULL;
|
||||
size_t count = mi_atomic_read(®ions_count);
|
||||
size_t idx = mi_atomic_read(®ion_next_idx);
|
||||
for (size_t visited = 0; visited < count; visited++, idx++) {
|
||||
if (!mi_region_try_alloc_blocks(idx%count, blocks, size, &p, id, tld)) return NULL; // error
|
||||
if (p != NULL) break;
|
||||
}
|
||||
|
||||
if (p == NULL) {
|
||||
// no free range in existing regions -- try to extend beyond the count
|
||||
for (idx = count; idx < MI_REGION_MAX; idx++) {
|
||||
if (!mi_region_try_alloc_blocks(idx, blocks, size, &p, id, tld)) return NULL; // error
|
||||
if (p != NULL) break;
|
||||
}
|
||||
}
|
||||
|
||||
if (p == NULL) {
|
||||
// we could not find a place to allocate, fall back to the os directly
|
||||
p = _mi_os_alloc_aligned(size, alignment, true, tld);
|
||||
}
|
||||
|
||||
mi_assert_internal( p == NULL || (uintptr_t)p % alignment == 0);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
// Allocate `size` memory. Return non NULL on success, with a given memory `id`.
|
||||
void* _mi_mem_alloc(size_t size, size_t* id, mi_os_tld_t* tld) {
|
||||
return _mi_mem_alloc_aligned(size,0,id,tld);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Free
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
// Free previously allocated memory with a given id.
|
||||
void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats) {
|
||||
mi_assert_internal(size > 0 && stats != NULL);
|
||||
if (p==NULL) return;
|
||||
if (size==0) return;
|
||||
if (id == SIZE_MAX) {
|
||||
// was a direct OS allocation, pass through
|
||||
_mi_os_free(p, size, stats);
|
||||
}
|
||||
else {
|
||||
// allocated in a region
|
||||
mi_assert_internal(size <= MI_REGION_MAX_ALLOC_SIZE); if (size > MI_REGION_MAX_ALLOC_SIZE) return;
|
||||
// we can align the size up to page size (as we allocate that way too)
|
||||
// this ensures we fully commit/decommit/reset
|
||||
size = _mi_align_up(size, _mi_os_page_size());
|
||||
size_t idx = (id / MI_REGION_MAP_BITS);
|
||||
size_t bitidx = (id % MI_REGION_MAP_BITS);
|
||||
size_t blocks = mi_region_block_count(size);
|
||||
size_t mask = mi_region_block_mask(blocks, bitidx);
|
||||
mi_assert_internal(idx < MI_REGION_MAX); if (idx >= MI_REGION_MAX) return; // or `abort`?
|
||||
mem_region_t* region = ®ions[idx];
|
||||
mi_assert_internal((mi_atomic_read(®ion->map) & mask) == mask ); // claimed?
|
||||
void* start = mi_atomic_read_ptr(®ion->start);
|
||||
mi_assert_internal(start != NULL);
|
||||
void* blocks_start = (uint8_t*)start + (bitidx * MI_SEGMENT_SIZE);
|
||||
mi_assert_internal(blocks_start == p); // not a pointer in our area?
|
||||
mi_assert_internal(bitidx + blocks <= MI_REGION_MAP_BITS);
|
||||
if (blocks_start != p || bitidx + blocks > MI_REGION_MAP_BITS) return; // or `abort`?
|
||||
|
||||
// decommit (or reset) the blocks to reduce the working set.
|
||||
// TODO: implement delayed decommit/reset as these calls are too expensive
|
||||
// if the memory is reused soon.
|
||||
// reset: 10x slowdown on malloc-large, decommit: 17x slowdown on malloc-large
|
||||
if (mi_option_is_enabled(mi_option_eager_commit)) {
|
||||
// _mi_os_reset(p, size, stats); // 10x slowdown on malloc-large
|
||||
}
|
||||
else {
|
||||
// _mi_os_decommit(p, size, stats); // 17x slowdown on malloc-large
|
||||
}
|
||||
|
||||
// TODO: should we free empty regions?
|
||||
// this frees up virtual address space which
|
||||
// might be useful on 32-bit systems?
|
||||
|
||||
// and unclaim
|
||||
uintptr_t map;
|
||||
uintptr_t newmap;
|
||||
do {
|
||||
map = mi_atomic_read(®ion->map);
|
||||
newmap = map & ~mask;
|
||||
} while (!mi_atomic_compare_exchange(®ion->map, newmap, map));
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Other
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
bool _mi_mem_reset(void* p, size_t size, mi_stats_t* stats) {
|
||||
return _mi_os_reset(p, size, stats);
|
||||
}
|
||||
|
||||
bool _mi_mem_protect(void* p, size_t size) {
|
||||
return _mi_os_protect(p, size);
|
||||
}
|
||||
|
||||
bool _mi_mem_unprotect(void* p, size_t size) {
|
||||
return _mi_os_unprotect(p, size);
|
||||
}
|
@ -30,8 +30,8 @@ typedef struct mi_option_desc_s {
|
||||
static mi_option_desc_t options[_mi_option_last] = {
|
||||
{ 0, UNINIT, "page_reset" },
|
||||
{ 0, UNINIT, "cache_reset" },
|
||||
{ 0, UNINIT, "pool_commit" },
|
||||
{ 0, UNINIT, "large_os_pages" }, // use large OS pages
|
||||
{ 1, UNINIT, "eager_commit" }, // on by default as it seems to be faster in general
|
||||
{ 0, UNINIT, "large_os_pages" }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's
|
||||
#if MI_SECURE
|
||||
{ MI_SECURE, INITIALIZED, "secure" }, // in secure build the environment setting is ignored
|
||||
#else
|
||||
|
321
src/os.c
321
src/os.c
@ -12,7 +12,6 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#include "mimalloc-internal.h"
|
||||
|
||||
#include <string.h> // memset
|
||||
#include <stdio.h> // debug fprintf
|
||||
#include <errno.h>
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
@ -28,15 +27,37 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#include <unistd.h> // sysconf
|
||||
#endif
|
||||
|
||||
// page size (initialized properly in `os_init`)
|
||||
static size_t os_page_size = 4096;
|
||||
|
||||
// minimal allocation granularity
|
||||
static size_t os_alloc_granularity = 4096;
|
||||
|
||||
// if non-zero, use large page allocation
|
||||
static size_t large_os_page_size = 0;
|
||||
|
||||
// OS (small) page size
|
||||
size_t _mi_os_page_size() {
|
||||
return os_page_size;
|
||||
}
|
||||
|
||||
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
|
||||
size_t _mi_os_large_page_size() {
|
||||
return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size());
|
||||
}
|
||||
|
||||
static bool use_large_os_page(size_t size, size_t alignment) {
|
||||
// if we have access, check the size and alignment requirements
|
||||
if (large_os_page_size == 0) return false;
|
||||
return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
|
||||
}
|
||||
|
||||
// round to a good allocation size
|
||||
static size_t mi_os_good_alloc_size(size_t size, size_t alignment) {
|
||||
UNUSED(alignment);
|
||||
if (size >= (SIZE_MAX - os_alloc_granularity)) return size; // possible overflow?
|
||||
return _mi_align_up(size, os_alloc_granularity);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
|
||||
@ -45,11 +66,17 @@ typedef PVOID (*VirtualAlloc2Ptr)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MEM_EXTEN
|
||||
static VirtualAlloc2Ptr pVirtualAlloc2 = NULL;
|
||||
|
||||
void _mi_os_init(void) {
|
||||
// Try to get the VirtualAlloc2 function (only supported on Windows 10 and Windows Server 2016)
|
||||
// get the page size
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
if (si.dwPageSize > 0) os_page_size = si.dwPageSize;
|
||||
if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity;
|
||||
// get the VirtualAlloc2 function
|
||||
HINSTANCE hDll;
|
||||
hDll = LoadLibrary("kernelbase.dll");
|
||||
if (hDll!=NULL) {
|
||||
pVirtualAlloc2 = (VirtualAlloc2Ptr)GetProcAddress(hDll, "VirtualAlloc2");
|
||||
// use VirtualAlloc2FromApp as it is available to Windows store apps
|
||||
pVirtualAlloc2 = (VirtualAlloc2Ptr)GetProcAddress(hDll, "VirtualAlloc2FromApp");
|
||||
FreeLibrary(hDll);
|
||||
}
|
||||
// Try to see if large OS pages are supported
|
||||
@ -86,8 +113,15 @@ void _mi_os_init(void) {
|
||||
}
|
||||
#else
|
||||
void _mi_os_init() {
|
||||
// nothing to do
|
||||
use_large_os_page(0, 0); // dummy call to suppress warnings
|
||||
// get the page size
|
||||
long result = sysconf(_SC_PAGESIZE);
|
||||
if (result > 0) {
|
||||
os_page_size = (size_t)result;
|
||||
os_alloc_granularity = os_page_size;
|
||||
}
|
||||
if (mi_option_is_enabled(mi_option_large_os_pages)) {
|
||||
large_os_page_size = (1UL<<21); // 2MiB
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -116,26 +150,8 @@ static void* mi_align_down_ptr(void* p, size_t alignment) {
|
||||
return (void*)_mi_align_down((uintptr_t)p, alignment);
|
||||
}
|
||||
|
||||
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld);
|
||||
|
||||
// cached OS page size
|
||||
size_t _mi_os_page_size(void) {
|
||||
static size_t page_size = 0;
|
||||
if (page_size == 0) {
|
||||
#if defined(_WIN32)
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
page_size = (si.dwPageSize > 0 ? si.dwPageSize : 4096);
|
||||
#else
|
||||
long result = sysconf(_SC_PAGESIZE);
|
||||
page_size = (result > 0 ? (size_t)result : 4096);
|
||||
#endif
|
||||
}
|
||||
return page_size;
|
||||
}
|
||||
|
||||
|
||||
static bool mi_munmap(void* addr, size_t size)
|
||||
static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
|
||||
{
|
||||
if (addr == NULL || size == 0) return true;
|
||||
bool err = false;
|
||||
@ -144,6 +160,8 @@ static bool mi_munmap(void* addr, size_t size)
|
||||
#else
|
||||
err = (munmap(addr, size) == -1);
|
||||
#endif
|
||||
_mi_stat_decrease(&stats->committed, size); // TODO: what if never committed?
|
||||
_mi_stat_decrease(&stats->reserved, size);
|
||||
if (err) {
|
||||
#pragma warning(suppress:4996)
|
||||
_mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size);
|
||||
@ -154,16 +172,18 @@ static bool mi_munmap(void* addr, size_t size)
|
||||
}
|
||||
}
|
||||
|
||||
static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats) {
|
||||
static void* mi_os_mem_alloc(void* addr, size_t size, bool commit, int extra_flags, mi_stats_t* stats) {
|
||||
UNUSED(stats);
|
||||
if (size == 0) return NULL;
|
||||
void* p = NULL;
|
||||
#if defined(_WIN32)
|
||||
int flags = MEM_RESERVE | extra_flags;
|
||||
if (commit) flags |= MEM_COMMIT;
|
||||
if (use_large_os_page(size, 0)) {
|
||||
p = VirtualAlloc(addr, size, MEM_LARGE_PAGES | MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE);
|
||||
p = VirtualAlloc(addr, size, MEM_LARGE_PAGES | flags, PAGE_READWRITE);
|
||||
}
|
||||
if (p == NULL) {
|
||||
p = VirtualAlloc(addr, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE);
|
||||
p = VirtualAlloc(addr, size, flags, PAGE_READWRITE);
|
||||
}
|
||||
#else
|
||||
#if !defined(MAP_ANONYMOUS)
|
||||
@ -179,19 +199,43 @@ static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats
|
||||
flags |= MAP_FIXED;
|
||||
#endif
|
||||
}
|
||||
p = mmap(addr, size, (PROT_READ | PROT_WRITE), flags, -1, 0);
|
||||
if (p == MAP_FAILED) p = NULL;
|
||||
if (large_os_page_size > 0 && use_large_os_page(size, 0) && ((uintptr_t)addr % large_os_page_size) == 0) {
|
||||
int lflags = flags;
|
||||
#ifdef MAP_ALIGNED_SUPER
|
||||
lflags |= MAP_ALIGNED_SUPER;
|
||||
#endif
|
||||
#ifdef MAP_HUGETLB
|
||||
lflags |= MAP_HUGETLB;
|
||||
#endif
|
||||
#ifdef MAP_HUGE_2MB
|
||||
lflags |= MAP_HUGE_2MB;
|
||||
#endif
|
||||
if (lflags != flags) {
|
||||
// try large page allocation
|
||||
p = mmap(addr, size, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE), lflags, -1, 0);
|
||||
if (p == MAP_FAILED) p = NULL;
|
||||
}
|
||||
}
|
||||
if (p == NULL) {
|
||||
p = mmap(addr, size, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE), flags, -1, 0);
|
||||
if (p == MAP_FAILED) p = NULL;
|
||||
}
|
||||
if (addr != NULL && p != addr) {
|
||||
mi_munmap(p, size);
|
||||
mi_os_mem_free(p, size, stats);
|
||||
p = NULL;
|
||||
}
|
||||
#endif
|
||||
UNUSED(stats);
|
||||
mi_assert(p == NULL || (addr == NULL && p != addr) || (addr != NULL && p == addr));
|
||||
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
|
||||
if (p != NULL) {
|
||||
mi_stat_increase(stats->mmap_calls, 1);
|
||||
mi_stat_increase(stats->reserved, size);
|
||||
if (commit) mi_stat_increase(stats->committed, size);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) {
|
||||
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, mi_stats_t* stats) {
|
||||
if (alignment < _mi_os_page_size() || ((alignment & (~alignment + 1)) != alignment)) return NULL;
|
||||
void* p = NULL;
|
||||
#if defined(_WIN32) && defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
|
||||
@ -202,27 +246,33 @@ static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) {
|
||||
MEM_EXTENDED_PARAMETER param = { 0 };
|
||||
param.Type = MemExtendedParameterAddressRequirements;
|
||||
param.Pointer = &reqs;
|
||||
DWORD extra_flags = 0;
|
||||
if (use_large_os_page(size, alignment)) extra_flags |= MEM_LARGE_PAGES;
|
||||
p = (*pVirtualAlloc2)(NULL, NULL, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE, ¶m, 1);
|
||||
DWORD flags = MEM_RESERVE;
|
||||
if (commit) flags |= MEM_COMMIT;
|
||||
if (use_large_os_page(size, alignment)) flags |= MEM_LARGE_PAGES;
|
||||
p = (*pVirtualAlloc2)(NULL, NULL, size, flags, PAGE_READWRITE, ¶m, 1);
|
||||
}
|
||||
#elif defined(MAP_ALIGNED)
|
||||
// on BSD, use the aligned mmap api
|
||||
size_t n = _mi_bsr(alignment);
|
||||
if ((size_t)1 << n == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
|
||||
p = mi_mmap(suggest, size, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
|
||||
if (((size_t)1 << n) == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
|
||||
p = mi_os_mem_alloc(suggest, size, commit, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
|
||||
}
|
||||
#else
|
||||
UNUSED(size);
|
||||
UNUSED(alignment);
|
||||
#endif
|
||||
UNUSED(stats); // if !STATS
|
||||
mi_assert(p == NULL || (uintptr_t)p % alignment == 0);
|
||||
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
|
||||
if (p != NULL) {
|
||||
mi_stat_increase(stats->mmap_calls, 1);
|
||||
mi_stat_increase(stats->reserved, size);
|
||||
if (commit) mi_stat_increase(stats->committed, size);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) {
|
||||
// Conservatively OS page align within a given area
|
||||
static void* mi_os_page_align_area(void* addr, size_t size, size_t* newsize) {
|
||||
mi_assert(addr != NULL && size > 0);
|
||||
if (newsize != NULL) *newsize = 0;
|
||||
if (size == 0 || addr == NULL) return NULL;
|
||||
@ -242,16 +292,31 @@ static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) {
|
||||
// but may be used later again. This will release physical memory
|
||||
// pages and reduce swapping while keeping the memory committed.
|
||||
// We page align to a conservative area inside the range to reset.
|
||||
bool _mi_os_reset(void* addr, size_t size) {
|
||||
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
|
||||
// page align conservatively within the range
|
||||
size_t csize;
|
||||
void* start = mi_os_page_align_region(addr,size,&csize);
|
||||
void* start = mi_os_page_align_area(addr,size,&csize);
|
||||
if (csize==0) return true;
|
||||
UNUSED(stats); // if !STATS
|
||||
mi_stat_increase(stats->reset, csize);
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
|
||||
// (but this is for an access pattern that immediately reuses the memory)
|
||||
/*
|
||||
DWORD ok = DiscardVirtualMemory(start, csize);
|
||||
return (ok != 0);
|
||||
*/
|
||||
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
|
||||
mi_assert(p == start);
|
||||
return (p == start);
|
||||
if (p != start) return false;
|
||||
/*
|
||||
// VirtualUnlock removes the memory eagerly from the current working set (which MEM_RESET does lazily on demand)
|
||||
// TODO: put this behind an option?
|
||||
DWORD ok = VirtualUnlock(start, csize);
|
||||
if (ok != 0) return false;
|
||||
*/
|
||||
return true;
|
||||
#else
|
||||
#if defined(MADV_FREE)
|
||||
static int advice = MADV_FREE;
|
||||
@ -276,19 +341,19 @@ bool _mi_os_reset(void* addr, size_t size) {
|
||||
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
|
||||
// page align conservatively within the range
|
||||
size_t csize = 0;
|
||||
void* start = mi_os_page_align_region(addr, size, &csize);
|
||||
void* start = mi_os_page_align_area(addr, size, &csize);
|
||||
if (csize==0) return false;
|
||||
|
||||
int err = 0;
|
||||
#ifdef _WIN32
|
||||
DWORD oldprotect = 0;
|
||||
BOOL ok = VirtualProtect(start,csize,protect ? PAGE_NOACCESS : PAGE_READWRITE,&oldprotect);
|
||||
err = (ok ? 0 : -1);
|
||||
err = (ok ? 0 : GetLastError());
|
||||
#else
|
||||
err = mprotect(start,csize,protect ? PROT_NONE : (PROT_READ|PROT_WRITE));
|
||||
#endif
|
||||
if (err != 0) {
|
||||
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno);
|
||||
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
|
||||
}
|
||||
return (err==0);
|
||||
}
|
||||
@ -301,24 +366,48 @@ bool _mi_os_unprotect(void* addr, size_t size) {
|
||||
return mi_os_protectx(addr, size, false);
|
||||
}
|
||||
|
||||
bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) {
|
||||
// Commit/Decommit memory.
|
||||
// We page align to a conservative area inside the range to reset.
|
||||
static bool mi_os_commitx(void* addr, size_t size, bool commit, mi_stats_t* stats) {
|
||||
// page align conservatively within the range
|
||||
mi_assert_internal(oldsize > newsize && p != NULL);
|
||||
if (oldsize < newsize || p==NULL) return false;
|
||||
if (oldsize == newsize) return true;
|
||||
size_t csize;
|
||||
void* start = mi_os_page_align_area(addr, size, &csize);
|
||||
if (csize == 0) return true;
|
||||
int err = 0;
|
||||
UNUSED(stats); // if !STATS
|
||||
if (commit) {
|
||||
mi_stat_increase(stats->committed, csize);
|
||||
mi_stat_increase(stats->commit_calls,1);
|
||||
}
|
||||
else {
|
||||
mi_stat_decrease(stats->committed, csize);
|
||||
}
|
||||
|
||||
// oldsize and newsize should be page aligned or we cannot shrink precisely
|
||||
void* addr = (uint8_t*)p + newsize;
|
||||
size_t size = 0;
|
||||
void* start = mi_os_page_align_region(addr, oldsize - newsize, &size);
|
||||
if (size==0 || start != addr) return false;
|
||||
|
||||
#ifdef _WIN32
|
||||
// we cannot shrink on windows
|
||||
return false;
|
||||
#else
|
||||
return mi_munmap( start, size );
|
||||
#endif
|
||||
#if defined(_WIN32)
|
||||
if (commit) {
|
||||
void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
|
||||
err = (p == start ? 0 : GetLastError());
|
||||
}
|
||||
else {
|
||||
BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT);
|
||||
err = (ok ? 0 : GetLastError());
|
||||
}
|
||||
#else
|
||||
err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE));
|
||||
#endif
|
||||
if (err != 0) {
|
||||
_mi_warning_message("commit/decommit error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
|
||||
}
|
||||
mi_assert_internal(err == 0);
|
||||
return (err == 0);
|
||||
}
|
||||
|
||||
bool _mi_os_commit(void* addr, size_t size, mi_stats_t* stats) {
|
||||
return mi_os_commitx(addr, size, true, stats);
|
||||
}
|
||||
|
||||
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats) {
|
||||
return mi_os_commitx(addr, size, false, stats);
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
@ -327,22 +416,21 @@ bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) {
|
||||
|
||||
void* _mi_os_alloc(size_t size, mi_stats_t* stats) {
|
||||
if (size == 0) return NULL;
|
||||
void* p = mi_mmap(NULL, size, 0, stats);
|
||||
size = mi_os_good_alloc_size(size, 0);
|
||||
void* p = mi_os_mem_alloc(NULL, size, true, 0, stats);
|
||||
mi_assert(p!=NULL);
|
||||
if (p != NULL) mi_stat_increase(stats->reserved, size);
|
||||
return p;
|
||||
}
|
||||
|
||||
void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
|
||||
UNUSED(stats);
|
||||
mi_munmap(p, size);
|
||||
mi_stat_decrease(stats->reserved, size);
|
||||
mi_os_mem_free(p, size, stats);
|
||||
}
|
||||
|
||||
// Slow but guaranteed way to allocated aligned memory
|
||||
// by over-allocating and then reallocating at a fixed aligned
|
||||
// address that should be available then.
|
||||
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t trie, mi_stats_t* stats)
|
||||
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, bool commit, size_t trie, mi_stats_t* stats)
|
||||
{
|
||||
if (trie >= 3) return NULL; // stop recursion (only on Windows)
|
||||
size_t alloc_size = size + alignment;
|
||||
@ -350,28 +438,28 @@ static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t t
|
||||
if (alloc_size < size) return NULL;
|
||||
|
||||
// allocate a chunk that includes the alignment
|
||||
void* p = mi_mmap(NULL, alloc_size, 0, stats);
|
||||
void* p = mi_os_mem_alloc(NULL, alloc_size, commit, 0, stats);
|
||||
if (p == NULL) return NULL;
|
||||
// create an aligned pointer in the allocated area
|
||||
void* aligned_p = mi_align_up_ptr(p, alignment);
|
||||
mi_assert(aligned_p != NULL);
|
||||
#if defined(_WIN32)
|
||||
|
||||
// free it and try to allocate `size` at exactly `aligned_p`
|
||||
// note: this may fail in case another thread happens to VirtualAlloc
|
||||
// note: this may fail in case another thread happens to allocate
|
||||
// concurrently at that spot. We try up to 3 times to mitigate this.
|
||||
mi_munmap(p, alloc_size);
|
||||
p = mi_mmap(aligned_p, size, 0, stats);
|
||||
mi_os_mem_free(p, alloc_size, stats);
|
||||
p = mi_os_mem_alloc(aligned_p, size, commit, 0, stats);
|
||||
if (p != aligned_p) {
|
||||
if (p != NULL) mi_munmap(p, size);
|
||||
return mi_os_alloc_aligned_ensured(size, alignment, trie++, stats);
|
||||
if (p != NULL) mi_os_mem_free(p, size, stats);
|
||||
return mi_os_alloc_aligned_ensured(size, alignment, commit, trie++, stats);
|
||||
}
|
||||
#else
|
||||
#if 0 // could use this on mmap systems
|
||||
// we selectively unmap parts around the over-allocated area.
|
||||
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
|
||||
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
|
||||
size_t post_size = alloc_size - pre_size - mid_size;
|
||||
if (pre_size > 0) mi_munmap(p, pre_size);
|
||||
if (post_size > 0) mi_munmap((uint8_t*)aligned_p + mid_size, post_size);
|
||||
if (pre_size > 0) mi_os_mem_free(p, pre_size, stats);
|
||||
if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, stats);
|
||||
#endif
|
||||
|
||||
mi_assert(((uintptr_t)aligned_p) % alignment == 0);
|
||||
@ -382,22 +470,21 @@ static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t t
|
||||
// Since `mi_mmap` is relatively slow we try to allocate directly at first and
|
||||
// hope to get an aligned address; only when that fails we fall back
|
||||
// to a guaranteed method by overallocating at first and adjusting.
|
||||
// TODO: use VirtualAlloc2 with alignment on Windows 10 / Windows Server 2016.
|
||||
void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld)
|
||||
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld_t* tld)
|
||||
{
|
||||
if (size == 0) return NULL;
|
||||
if (alignment < 1024) return _mi_os_alloc(size, tld->stats);
|
||||
|
||||
void* p = os_pool_alloc(size,alignment,tld);
|
||||
if (p != NULL) return p;
|
||||
size = mi_os_good_alloc_size(size,alignment);
|
||||
if (alignment < 1024) return mi_os_mem_alloc(NULL, size, commit, 0, tld->stats);
|
||||
|
||||
// try direct OS aligned allocation; only supported on BSD and Windows 10+
|
||||
void* suggest = NULL;
|
||||
void* p = mi_os_mem_alloc_aligned(size,alignment,commit,tld->stats);
|
||||
|
||||
p = mi_mmap_aligned(size,alignment,tld->stats);
|
||||
// Fall back
|
||||
if (p==NULL && (tld->mmap_next_probable % alignment) == 0) {
|
||||
// if the next probable address is aligned,
|
||||
// then try to just allocate `size` and hope it is aligned...
|
||||
p = mi_mmap(suggest, size, 0, tld->stats);
|
||||
p = mi_os_mem_alloc(suggest, size, commit, 0, tld->stats);
|
||||
if (p == NULL) return NULL;
|
||||
if (((uintptr_t)p % alignment) == 0) mi_stat_increase(tld->stats->mmap_right_align, 1);
|
||||
}
|
||||
@ -406,75 +493,23 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld)
|
||||
if (p==NULL || ((uintptr_t)p % alignment) != 0) {
|
||||
// if `p` is not yet aligned after all, free the block and use a slower
|
||||
// but guaranteed way to allocate an aligned block
|
||||
if (p != NULL) mi_munmap(p, size);
|
||||
if (p != NULL) mi_os_mem_free(p, size, tld->stats);
|
||||
mi_stat_increase( tld->stats->mmap_ensure_aligned, 1);
|
||||
//fprintf(stderr, "mimalloc: slow mmap 0x%lx\n", _mi_thread_id());
|
||||
p = mi_os_alloc_aligned_ensured(size, alignment,0,tld->stats);
|
||||
p = mi_os_alloc_aligned_ensured(size, alignment,commit,0,tld->stats);
|
||||
}
|
||||
if (p != NULL) {
|
||||
mi_stat_increase( tld->stats->reserved, size);
|
||||
|
||||
// next probable address is the page-aligned address just after the newly allocated area.
|
||||
const size_t alloc_align =
|
||||
#if defined(_WIN32)
|
||||
64 * 1024; // Windows allocates 64kb aligned
|
||||
#else
|
||||
_mi_os_page_size(); // page size on other OS's
|
||||
#endif
|
||||
if (p != NULL) {
|
||||
// next probable address is the page-aligned address just after the newly allocated area.
|
||||
size_t probable_size = MI_SEGMENT_SIZE;
|
||||
if (tld->mmap_previous > p) {
|
||||
// Linux tends to allocate downward
|
||||
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, alloc_align); // ((uintptr_t)previous - (uintptr_t)p);
|
||||
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, os_alloc_granularity); // ((uintptr_t)previous - (uintptr_t)p);
|
||||
}
|
||||
else {
|
||||
// Otherwise, guess the next address is page aligned `size` from current pointer
|
||||
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, alloc_align);
|
||||
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, os_alloc_granularity);
|
||||
}
|
||||
tld->mmap_previous = p;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// Pooled allocation: on 64-bit systems with plenty
|
||||
// of virtual addresses, we allocate 10 segments at the
|
||||
// time to minimize `mmap` calls and increase aligned
|
||||
// allocations. This is only good on systems that
|
||||
// do overcommit so we put it behind the `MIMALLOC_POOL_COMMIT` option.
|
||||
// For now, we disable it on windows as VirtualFree must
|
||||
// be called on the original allocation and cannot be called
|
||||
// for individual fragments.
|
||||
#if defined(_WIN32) || (MI_INTPTR_SIZE<8)
|
||||
|
||||
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld) {
|
||||
UNUSED(size);
|
||||
UNUSED(alignment);
|
||||
UNUSED(tld);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define MI_POOL_ALIGNMENT MI_SEGMENT_SIZE
|
||||
#define MI_POOL_SIZE (10*MI_POOL_ALIGNMENT)
|
||||
|
||||
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld)
|
||||
{
|
||||
if (!mi_option_is_enabled(mi_option_pool_commit)) return NULL;
|
||||
if (alignment != MI_POOL_ALIGNMENT) return NULL;
|
||||
size = _mi_align_up(size,MI_POOL_ALIGNMENT);
|
||||
if (size > MI_POOL_SIZE) return NULL;
|
||||
|
||||
if (tld->pool_available == 0) {
|
||||
tld->pool = (uint8_t*)mi_os_alloc_aligned_ensured(MI_POOL_SIZE,MI_POOL_ALIGNMENT,0,tld->stats);
|
||||
if (tld->pool == NULL) return NULL;
|
||||
tld->pool_available += MI_POOL_SIZE;
|
||||
}
|
||||
|
||||
if (size > tld->pool_available) return NULL;
|
||||
void* p = tld->pool;
|
||||
tld->pool_available -= size;
|
||||
tld->pool += size;
|
||||
return p;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -267,7 +267,9 @@ static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) {
|
||||
static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) {
|
||||
mi_assert_internal(page->heap == NULL);
|
||||
mi_assert_internal(!mi_page_queue_contains(queue, page));
|
||||
mi_assert_internal(page->block_size == queue->block_size || (page->block_size > MI_LARGE_SIZE_MAX && mi_page_queue_is_huge(queue)) || (page->flags.in_full && mi_page_queue_is_full(queue)));
|
||||
mi_assert_internal(page->block_size == queue->block_size ||
|
||||
(page->block_size > MI_LARGE_SIZE_MAX && mi_page_queue_is_huge(queue)) ||
|
||||
(page->flags.in_full && mi_page_queue_is_full(queue)));
|
||||
|
||||
page->flags.in_full = mi_page_queue_is_full(queue);
|
||||
page->heap = heap;
|
||||
@ -292,9 +294,11 @@ static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* fro
|
||||
mi_assert_internal(page != NULL);
|
||||
mi_assert_expensive(mi_page_queue_contains(from, page));
|
||||
mi_assert_expensive(!mi_page_queue_contains(to, page));
|
||||
mi_assert_internal(page->block_size == to->block_size ||
|
||||
mi_assert_internal((page->block_size == to->block_size && page->block_size == from->block_size) ||
|
||||
(page->block_size == to->block_size && mi_page_queue_is_full(from)) ||
|
||||
(page->block_size == from->block_size && mi_page_queue_is_full(to)) ||
|
||||
(page->block_size > MI_LARGE_SIZE_MAX && mi_page_queue_is_huge(to)) ||
|
||||
(page->block_size == from->block_size && mi_page_queue_is_full(to)));
|
||||
(page->block_size > MI_LARGE_SIZE_MAX && mi_page_queue_is_full(to)));
|
||||
|
||||
if (page->prev != NULL) page->prev->next = page->next;
|
||||
if (page->next != NULL) page->next->prev = page->prev;
|
||||
|
@ -453,7 +453,7 @@ static void mi_page_free_list_extend( mi_heap_t* heap, mi_page_t* page, size_t e
|
||||
}
|
||||
// enable the new free list
|
||||
page->capacity += (uint16_t)extend;
|
||||
mi_stat_increase(stats->committed, extend * page->block_size);
|
||||
mi_stat_increase(stats->page_committed, extend * page->block_size);
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
|
218
src/segment.c
218
src/segment.c
@ -108,19 +108,6 @@ static void mi_segment_enqueue(mi_segment_queue_t* queue, mi_segment_t* segment)
|
||||
}
|
||||
}
|
||||
|
||||
static void mi_segment_queue_insert_before(mi_segment_queue_t* queue, mi_segment_t* elem, mi_segment_t* segment) {
|
||||
mi_assert_expensive(elem==NULL || mi_segment_queue_contains(queue, elem));
|
||||
mi_assert_expensive(segment != NULL && !mi_segment_queue_contains(queue, segment));
|
||||
|
||||
segment->prev = (elem == NULL ? queue->last : elem->prev);
|
||||
if (segment->prev != NULL) segment->prev->next = segment;
|
||||
else queue->first = segment;
|
||||
segment->next = elem;
|
||||
if (segment->next != NULL) segment->next->prev = segment;
|
||||
else queue->last = segment;
|
||||
}
|
||||
|
||||
|
||||
// Start of the page available memory
|
||||
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size)
|
||||
{
|
||||
@ -176,17 +163,17 @@ static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
/* ----------------------------------------------------------------------------
|
||||
Segment caches
|
||||
We keep a small segment cache per thread to avoid repeated allocation
|
||||
and free in the OS if a program allocates memory and then frees
|
||||
all again repeatedly. (We tried a one-element cache but that
|
||||
proves to be too small for certain workloads).
|
||||
----------------------------------------------------------- */
|
||||
We keep a small segment cache per thread to increase local
|
||||
reuse and avoid setting/clearing guard pages in secure mode.
|
||||
------------------------------------------------------------------------------- */
|
||||
|
||||
static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
|
||||
if (segment_size>=0) mi_stat_increase(tld->stats->segments,1);
|
||||
else mi_stat_decrease(tld->stats->segments,1);
|
||||
tld->count += (segment_size >= 0 ? 1 : -1);
|
||||
if (tld->count > tld->peak_count) tld->peak_count = tld->count;
|
||||
tld->current_size += segment_size;
|
||||
if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
|
||||
}
|
||||
@ -194,123 +181,87 @@ static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
|
||||
|
||||
static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
|
||||
mi_segments_track_size(-((long)segment_size),tld);
|
||||
_mi_os_free(segment, segment_size,tld->stats);
|
||||
if (mi_option_is_enabled(mi_option_secure)) {
|
||||
_mi_mem_unprotect(segment, segment->segment_size); // ensure no more guard pages are set
|
||||
}
|
||||
_mi_mem_free(segment, segment_size, segment->memid, tld->stats);
|
||||
}
|
||||
|
||||
// The segment cache is limited to be at most 1/8 of the peak size
|
||||
// in use (and no more than 32)
|
||||
#define MI_SEGMENT_CACHE_MAX (32)
|
||||
// The thread local segment cache is limited to be at most 1/8 of the peak size of segments in use,
|
||||
// and no more than 4.
|
||||
#define MI_SEGMENT_CACHE_MAX (4)
|
||||
#define MI_SEGMENT_CACHE_FRACTION (8)
|
||||
|
||||
|
||||
// Get a segment of at least `required` size.
|
||||
// If `required == MI_SEGMENT_SIZE` the `segment_size` will match exactly
|
||||
static mi_segment_t* _mi_segment_cache_findx(mi_segments_tld_t* tld, size_t required, bool reverse) {
|
||||
mi_assert_internal(required % _mi_os_page_size() == 0);
|
||||
mi_segment_t* segment = (reverse ? tld->cache.last : tld->cache.first);
|
||||
while (segment != NULL) {
|
||||
if (segment->segment_size >= required) {
|
||||
tld->cache_count--;
|
||||
tld->cache_size -= segment->segment_size;
|
||||
mi_segment_queue_remove(&tld->cache, segment);
|
||||
// exact size match?
|
||||
if (required==0 || segment->segment_size == required) {
|
||||
return segment;
|
||||
}
|
||||
// not more than 25% waste and on a huge page segment? (in that case the segment size does not need to match required)
|
||||
else if (required != MI_SEGMENT_SIZE && segment->segment_size - (segment->segment_size/4) <= required) {
|
||||
return segment;
|
||||
}
|
||||
// try to shrink the memory to match exactly
|
||||
else {
|
||||
if (mi_option_is_enabled(mi_option_secure)) {
|
||||
_mi_os_unprotect(segment, segment->segment_size);
|
||||
}
|
||||
if (_mi_os_shrink(segment, segment->segment_size, required)) {
|
||||
tld->current_size -= segment->segment_size;
|
||||
tld->current_size += required;
|
||||
segment->segment_size = required;
|
||||
return segment;
|
||||
}
|
||||
else {
|
||||
// if that all fails, we give up
|
||||
mi_segment_os_free(segment,segment->segment_size,tld);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
segment = (reverse ? segment->prev : segment->next);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static mi_segment_t* mi_segment_cache_find(mi_segments_tld_t* tld, size_t required) {
|
||||
return _mi_segment_cache_findx(tld,required,false);
|
||||
}
|
||||
|
||||
static mi_segment_t* mi_segment_cache_evict(mi_segments_tld_t* tld) {
|
||||
// TODO: random eviction instead?
|
||||
return _mi_segment_cache_findx(tld, 0, true /* from the end */);
|
||||
static mi_segment_t* mi_segment_cache_pop(size_t segment_size, mi_segments_tld_t* tld) {
|
||||
if (segment_size != 0 && segment_size != MI_SEGMENT_SIZE) return NULL;
|
||||
mi_segment_t* segment = tld->cache;
|
||||
if (segment == NULL) return NULL;
|
||||
tld->cache_count--;
|
||||
tld->cache = segment->next;
|
||||
segment->next = NULL;
|
||||
mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
|
||||
return segment;
|
||||
}
|
||||
|
||||
static bool mi_segment_cache_full(mi_segments_tld_t* tld) {
|
||||
if (tld->cache_count < MI_SEGMENT_CACHE_MAX &&
|
||||
tld->cache_size*MI_SEGMENT_CACHE_FRACTION < tld->peak_size) return false;
|
||||
tld->cache_count < (1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION))) { // always allow 1 element cache
|
||||
return false;
|
||||
}
|
||||
// take the opportunity to reduce the segment cache if it is too large (now)
|
||||
while (tld->cache_size*MI_SEGMENT_CACHE_FRACTION >= tld->peak_size + 1) {
|
||||
mi_segment_t* segment = mi_segment_cache_evict(tld);
|
||||
// TODO: this never happens as we check against peak usage, should we use current usage instead?
|
||||
while (tld->cache_count > (1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION))) {
|
||||
mi_segment_t* segment = mi_segment_cache_pop(0,tld);
|
||||
mi_assert_internal(segment != NULL);
|
||||
if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool mi_segment_cache_insert(mi_segment_t* segment, mi_segments_tld_t* tld) {
|
||||
mi_assert_internal(segment->next==NULL && segment->prev==NULL);
|
||||
mi_assert_internal(!mi_segment_is_in_free_queue(segment,tld));
|
||||
mi_assert_expensive(!mi_segment_queue_contains(&tld->cache, segment));
|
||||
if (mi_segment_cache_full(tld)) return false;
|
||||
static bool mi_segment_cache_push(mi_segment_t* segment, mi_segments_tld_t* tld) {
|
||||
mi_assert_internal(!mi_segment_is_in_free_queue(segment, tld));
|
||||
mi_assert_internal(segment->next == NULL);
|
||||
if (segment->segment_size != MI_SEGMENT_SIZE || mi_segment_cache_full(tld)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
|
||||
if (mi_option_is_enabled(mi_option_cache_reset) && !mi_option_is_enabled(mi_option_page_reset)) {
|
||||
_mi_os_reset((uint8_t*)segment + segment->segment_info_size, segment->segment_size - segment->segment_info_size);
|
||||
_mi_mem_reset((uint8_t*)segment + segment->segment_info_size, segment->segment_size - segment->segment_info_size, tld->stats);
|
||||
}
|
||||
// insert ordered
|
||||
mi_segment_t* seg = tld->cache.first;
|
||||
while (seg != NULL && seg->segment_size < segment->segment_size) {
|
||||
seg = seg->next;
|
||||
}
|
||||
mi_segment_queue_insert_before( &tld->cache, seg, segment );
|
||||
segment->next = tld->cache;
|
||||
tld->cache = segment;
|
||||
tld->cache_count++;
|
||||
tld->cache_size += segment->segment_size;
|
||||
return true;
|
||||
}
|
||||
|
||||
// called by ending threads to free cached segments
|
||||
// called by threads that are terminating to free cached segments
|
||||
void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
|
||||
mi_segment_t* segment;
|
||||
while ((segment = mi_segment_cache_find(tld,0)) != NULL) {
|
||||
mi_segment_os_free(segment, MI_SEGMENT_SIZE, tld);
|
||||
while ((segment = mi_segment_cache_pop(0,tld)) != NULL) {
|
||||
mi_segment_os_free(segment, segment->segment_size, tld);
|
||||
}
|
||||
mi_assert_internal(tld->cache_count == 0 && tld->cache_size == 0);
|
||||
mi_assert_internal(mi_segment_queue_is_empty(&tld->cache));
|
||||
mi_assert_internal(tld->cache_count == 0);
|
||||
mi_assert_internal(tld->cache == NULL);
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Segment allocation
|
||||
----------------------------------------------------------- */
|
||||
|
||||
|
||||
// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
|
||||
static mi_segment_t* mi_segment_alloc( size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
|
||||
static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
|
||||
{
|
||||
// calculate needed sizes first
|
||||
|
||||
size_t capacity;
|
||||
if (page_kind == MI_PAGE_HUGE) {
|
||||
mi_assert_internal(page_shift==MI_SEGMENT_SHIFT && required > 0);
|
||||
mi_assert_internal(page_shift == MI_SEGMENT_SHIFT && required > 0);
|
||||
capacity = 1;
|
||||
}
|
||||
else {
|
||||
mi_assert_internal(required==0);
|
||||
mi_assert_internal(required == 0);
|
||||
size_t page_size = (size_t)1 << page_shift;
|
||||
capacity = MI_SEGMENT_SIZE / page_size;
|
||||
mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0);
|
||||
@ -318,46 +269,52 @@ static mi_segment_t* mi_segment_alloc( size_t required, mi_page_kind_t page_kind
|
||||
}
|
||||
size_t info_size;
|
||||
size_t pre_size;
|
||||
size_t segment_size = mi_segment_size( capacity, required, &pre_size, &info_size);
|
||||
size_t segment_size = mi_segment_size(capacity, required, &pre_size, &info_size);
|
||||
mi_assert_internal(segment_size >= required);
|
||||
size_t page_size = (page_kind == MI_PAGE_HUGE ? segment_size : (size_t)1 << page_shift);
|
||||
|
||||
// Allocate the segment
|
||||
mi_segment_t* segment = NULL;
|
||||
|
||||
// try to get it from our caches
|
||||
segment = mi_segment_cache_find(tld,segment_size);
|
||||
mi_assert_internal(segment == NULL ||
|
||||
(segment_size==MI_SEGMENT_SIZE && segment_size == segment->segment_size) ||
|
||||
(segment_size!=MI_SEGMENT_SIZE && segment_size <= segment->segment_size));
|
||||
if (segment != NULL && mi_option_is_enabled(mi_option_secure) && (segment->page_kind != page_kind || segment->segment_size != segment_size)) {
|
||||
_mi_os_unprotect(segment,segment->segment_size);
|
||||
// Try to get it from our thread local cache first
|
||||
bool protection_still_good = false;
|
||||
mi_segment_t* segment = mi_segment_cache_pop(segment_size, tld);
|
||||
if (segment != NULL) {
|
||||
if (mi_option_is_enabled(mi_option_secure)) {
|
||||
if (segment->page_kind != page_kind) {
|
||||
_mi_mem_unprotect(segment, segment->segment_size); // reset protection if the page kind differs
|
||||
}
|
||||
else {
|
||||
protection_still_good = true; // otherwise, the guard pages are still in place
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// and otherwise allocate it from the OS
|
||||
if (segment == NULL) {
|
||||
segment = (mi_segment_t*)_mi_os_alloc_aligned(segment_size, MI_SEGMENT_SIZE, os_tld);
|
||||
if (segment == NULL) return NULL;
|
||||
mi_segments_track_size((long)segment_size,tld);
|
||||
else {
|
||||
// Allocate the segment from the OS
|
||||
size_t memid;
|
||||
segment = (mi_segment_t*)_mi_mem_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &memid, os_tld);
|
||||
if (segment == NULL) return NULL; // failed to allocate
|
||||
segment->memid = memid;
|
||||
mi_segments_track_size((long)segment_size, tld);
|
||||
}
|
||||
mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
|
||||
|
||||
mi_assert_internal((uintptr_t)segment % MI_SEGMENT_SIZE == 0);
|
||||
|
||||
memset(segment, 0, info_size);
|
||||
if (mi_option_is_enabled(mi_option_secure)) {
|
||||
// in secure mode, we set up a protected page in between the segment info
|
||||
// and the page data
|
||||
// zero the segment info
|
||||
{ size_t memid = segment->memid;
|
||||
memset(segment, 0, info_size);
|
||||
segment->memid = memid;
|
||||
}
|
||||
|
||||
if (mi_option_is_enabled(mi_option_secure) && !protection_still_good) {
|
||||
// in secure mode, we set up a protected page in between the segment info and the page data
|
||||
mi_assert_internal( info_size == pre_size - _mi_os_page_size() && info_size % _mi_os_page_size() == 0);
|
||||
_mi_os_protect( (uint8_t*)segment + info_size, (pre_size - info_size) );
|
||||
_mi_mem_protect( (uint8_t*)segment + info_size, (pre_size - info_size) );
|
||||
size_t os_page_size = _mi_os_page_size();
|
||||
if (mi_option_get(mi_option_secure) <= 1) {
|
||||
// and protect the last page too
|
||||
_mi_os_protect( (uint8_t*)segment + segment_size - os_page_size, os_page_size );
|
||||
_mi_mem_protect( (uint8_t*)segment + segment_size - os_page_size, os_page_size );
|
||||
}
|
||||
else {
|
||||
// protect every page
|
||||
for (size_t i = 0; i < capacity; i++) {
|
||||
_mi_os_protect( (uint8_t*)segment + (i+1)*page_size - os_page_size, os_page_size );
|
||||
_mi_mem_protect( (uint8_t*)segment + (i+1)*page_size - os_page_size, os_page_size );
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -372,7 +329,7 @@ static mi_segment_t* mi_segment_alloc( size_t required, mi_page_kind_t page_kind
|
||||
for (uint8_t i = 0; i < segment->capacity; i++) {
|
||||
segment->pages[i].segment_idx = i;
|
||||
}
|
||||
mi_stat_increase(tld->stats->committed, segment->segment_info_size);
|
||||
mi_stat_increase(tld->stats->page_committed, segment->segment_info_size);
|
||||
//fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment);
|
||||
return segment;
|
||||
}
|
||||
@ -387,6 +344,7 @@ static size_t mi_page_size(const mi_page_t* page) {
|
||||
#endif
|
||||
|
||||
static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
|
||||
UNUSED(force);
|
||||
//fprintf(stderr,"mimalloc: free segment at %p\n", (void*)segment);
|
||||
mi_assert(segment != NULL);
|
||||
if (mi_segment_is_in_free_queue(segment,tld)) {
|
||||
@ -403,7 +361,7 @@ static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t
|
||||
mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment));
|
||||
mi_assert(segment->next == NULL);
|
||||
mi_assert(segment->prev == NULL);
|
||||
mi_stat_decrease( tld->stats->committed, segment->segment_info_size);
|
||||
mi_stat_decrease( tld->stats->page_committed, segment->segment_info_size);
|
||||
segment->thread_id = 0;
|
||||
|
||||
// update reset memory statistics
|
||||
@ -415,7 +373,7 @@ static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t
|
||||
}
|
||||
}
|
||||
|
||||
if (!force && mi_segment_cache_insert(segment, tld)) {
|
||||
if (!force && mi_segment_cache_push(segment, tld)) {
|
||||
// it is put in our cache
|
||||
}
|
||||
else {
|
||||
@ -424,9 +382,6 @@ static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Free page management inside a segment
|
||||
----------------------------------------------------------- */
|
||||
@ -461,17 +416,16 @@ static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, mi_sta
|
||||
mi_assert_internal(page->segment_in_use);
|
||||
mi_assert_internal(mi_page_all_free(page));
|
||||
size_t inuse = page->capacity * page->block_size;
|
||||
mi_stat_decrease( stats->committed, inuse);
|
||||
mi_stat_decrease( stats->page_committed, inuse);
|
||||
mi_stat_decrease( stats->pages, 1);
|
||||
|
||||
// reset the page memory to reduce memory pressure?
|
||||
if (!page->is_reset && mi_option_is_enabled(mi_option_page_reset)) {
|
||||
size_t psize;
|
||||
uint8_t* start = _mi_segment_page_start(segment, page, &psize);
|
||||
mi_stat_increase( stats->reset, psize); // for stats we assume resetting the full page
|
||||
page->is_reset = true;
|
||||
if (inuse > 0) {
|
||||
_mi_os_reset(start, inuse);
|
||||
_mi_mem_reset(start, psize, stats); // TODO: just `inuse`?
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -94,12 +94,14 @@ static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) {
|
||||
mi_stat_add(&stats->reserved, &src->reserved, 1);
|
||||
mi_stat_add(&stats->committed, &src->committed, 1);
|
||||
mi_stat_add(&stats->reset, &src->reset, 1);
|
||||
mi_stat_add(&stats->page_committed, &src->page_committed, 1);
|
||||
|
||||
mi_stat_add(&stats->pages_abandoned, &src->pages_abandoned, 1);
|
||||
mi_stat_add(&stats->segments_abandoned, &src->segments_abandoned, 1);
|
||||
mi_stat_add(&stats->mmap_calls, &src->mmap_calls, 1);
|
||||
mi_stat_add(&stats->mmap_ensure_aligned, &src->mmap_ensure_aligned, 1);
|
||||
mi_stat_add(&stats->mmap_right_align, &src->mmap_right_align, 1);
|
||||
mi_stat_add(&stats->commit_calls, &src->commit_calls, 1);
|
||||
mi_stat_add(&stats->threads, &src->threads, 1);
|
||||
mi_stat_add(&stats->pages_extended, &src->pages_extended, 1);
|
||||
|
||||
@ -226,9 +228,10 @@ static void _mi_stats_print(mi_stats_t* stats, double secs, FILE* out) mi_attr_n
|
||||
_mi_fprintf(out, "malloc requested: ");
|
||||
mi_print_amount(stats->malloc.allocated, 1, out);
|
||||
_mi_fprintf(out, "\n\n");
|
||||
mi_stat_print(&stats->committed, "committed", 1, out);
|
||||
mi_stat_print(&stats->reserved, "reserved", 1, out);
|
||||
mi_stat_print(&stats->committed, "committed", 1, out);
|
||||
mi_stat_print(&stats->reset, "reset", -1, out);
|
||||
mi_stat_print(&stats->page_committed, "touched", 1, out);
|
||||
mi_stat_print(&stats->segments, "segments", -1, out);
|
||||
mi_stat_print(&stats->segments_abandoned, "-abandoned", -1, out);
|
||||
mi_stat_print(&stats->pages, "pages", -1, out);
|
||||
@ -237,6 +240,7 @@ static void _mi_stats_print(mi_stats_t* stats, double secs, FILE* out) mi_attr_n
|
||||
mi_stat_print(&stats->mmap_calls, "mmaps", 0, out);
|
||||
mi_stat_print(&stats->mmap_right_align, "mmap fast", 0, out);
|
||||
mi_stat_print(&stats->mmap_ensure_aligned, "mmap slow", 0, out);
|
||||
mi_stat_print(&stats->commit_calls, "commits", 0, out);
|
||||
mi_stat_print(&stats->threads, "threads", 0, out);
|
||||
mi_stat_counter_print(&stats->searches, "searches", out);
|
||||
#endif
|
||||
|
@ -139,6 +139,8 @@ int main() {
|
||||
CHECK("heap_destroy", test_heap1());
|
||||
CHECK("heap_delete", test_heap2());
|
||||
|
||||
//mi_stats_print(NULL);
|
||||
|
||||
// ---------------------------------------------------
|
||||
// Done
|
||||
// ---------------------------------------------------[]
|
||||
|
Loading…
x
Reference in New Issue
Block a user