googletest/include/gmock/gmock-matchers.h

2770 lines
98 KiB
C
Raw Normal View History

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used argument matchers. More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
2009-01-16 01:13:50 +00:00
#include <algorithm>
#include <limits>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
#include <vector>
#include <gmock/gmock-printers.h>
#include <gmock/internal/gmock-internal-utils.h>
#include <gmock/internal/gmock-port.h>
#include <gtest/gtest.h>
namespace testing {
// To implement a matcher Foo for type T, define:
// 1. a class FooMatcherImpl that implements the
// MatcherInterface<T> interface, and
// 2. a factory function that creates a Matcher<T> object from a
// FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers. It also eases
// ownership management as Matcher objects can now be copied like
// plain values.
// The implementation of a matcher.
template <typename T>
class MatcherInterface {
public:
virtual ~MatcherInterface() {}
// Returns true iff the matcher matches x.
virtual bool Matches(T x) const = 0;
// Describes this matcher to an ostream.
virtual void DescribeTo(::std::ostream* os) const = 0;
// Describes the negation of this matcher to an ostream. For
// example, if the description of this matcher is "is greater than
// 7", the negated description could be "is not greater than 7".
// You are not required to override this when implementing
// MatcherInterface, but it is highly advised so that your matcher
// can produce good error messages.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "not (";
DescribeTo(os);
*os << ")";
}
// Explains why x matches, or doesn't match, the matcher. Override
// this to provide any additional information that helps a user
// understand the match result.
virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const {
// By default, nothing more needs to be explained, as Google Mock
// has already printed the value of x when this function is
// called.
}
};
namespace internal {
// An internal class for implementing Matcher<T>, which will derive
// from it. We put functionalities common to all Matcher<T>
// specializations here to avoid code duplication.
template <typename T>
class MatcherBase {
public:
// Returns true iff this matcher matches x.
bool Matches(T x) const { return impl_->Matches(x); }
// Describes this matcher to an ostream.
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
// Describes the negation of this matcher to an ostream.
void DescribeNegationTo(::std::ostream* os) const {
impl_->DescribeNegationTo(os);
}
// Explains why x matches, or doesn't match, the matcher.
void ExplainMatchResultTo(T x, ::std::ostream* os) const {
impl_->ExplainMatchResultTo(x, os);
}
protected:
MatcherBase() {}
// Constructs a matcher from its implementation.
explicit MatcherBase(const MatcherInterface<T>* impl)
: impl_(impl) {}
virtual ~MatcherBase() {}
private:
// shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
// interfaces. The former dynamically allocates a chunk of memory
// to hold the reference count, while the latter tracks all
// references using a circular linked list without allocating
// memory. It has been observed that linked_ptr performs better in
// typical scenarios. However, shared_ptr can out-perform
// linked_ptr when there are many more uses of the copy constructor
// than the default constructor.
//
// If performance becomes a problem, we should see if using
// shared_ptr helps.
::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
};
// The default implementation of ExplainMatchResultTo() for
// polymorphic matchers.
template <typename PolymorphicMatcherImpl, typename T>
inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */,
const T& /* x */,
::std::ostream* /* os */) {
// By default, nothing more needs to be said, as Google Mock already
// prints the value of x elsewhere.
}
} // namespace internal
// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
// object that can check whether a value of type T matches. The
// implementation of Matcher<T> is just a linked_ptr to const
// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
// from Matcher!
template <typename T>
class Matcher : public internal::MatcherBase<T> {
public:
// Constructs a null matcher. Needed for storing Matcher objects in
// STL containers.
Matcher() {}
// Constructs a matcher from its implementation.
explicit Matcher(const MatcherInterface<T>* impl)
: internal::MatcherBase<T>(impl) {}
// Implicit constructor here allows people to write
// EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
Matcher(T value); // NOLINT
};
// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
// matcher is expected.
template <>
class Matcher<const internal::string&>
: public internal::MatcherBase<const internal::string&> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<const internal::string&>* impl)
: internal::MatcherBase<const internal::string&>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
};
template <>
class Matcher<internal::string>
: public internal::MatcherBase<internal::string> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<internal::string>* impl)
: internal::MatcherBase<internal::string>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
};
// The PolymorphicMatcher class template makes it easy to implement a
// polymorphic matcher (i.e. a matcher that can match values of more
// than one type, e.g. Eq(n) and NotNull()).
//
// To define a polymorphic matcher, a user first provides a Impl class
// that has a Matches() method, a DescribeTo() method, and a
// DescribeNegationTo() method. The Matches() method is usually a
// method template (such that it works with multiple types). Then the
// user creates the polymorphic matcher using
// MakePolymorphicMatcher(). To provide additional explanation to the
// match result, define a FREE function (or function template)
//
// void ExplainMatchResultTo(const Impl& matcher, const Value& value,
// ::std::ostream* os);
//
// in the SAME NAME SPACE where Impl is defined. See the definition
// of NotNull() for a complete example.
template <class Impl>
class PolymorphicMatcher {
public:
explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}
// Returns a mutable reference to the underlying matcher
// implementation object.
Impl& mutable_impl() { return impl_; }
// Returns an immutable reference to the underlying matcher
// implementation object.
const Impl& impl() const { return impl_; }
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new MonomorphicImpl<T>(impl_));
}
private:
template <typename T>
class MonomorphicImpl : public MatcherInterface<T> {
public:
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
virtual bool Matches(T x) const { return impl_.Matches(x); }
virtual void DescribeTo(::std::ostream* os) const {
impl_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
impl_.DescribeNegationTo(os);
}
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
using ::testing::internal::ExplainMatchResultTo;
// C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
// resolve the call to ExplainMatchResultTo() here. This
// means that if there's a ExplainMatchResultTo() function
// defined in the name space where class Impl is defined, it
// will be picked by the compiler as the better match.
// Otherwise the default implementation of it in
// ::testing::internal will be picked.
//
// This look-up rule lets a writer of a polymorphic matcher
// customize the behavior of ExplainMatchResultTo() when he
// cares to. Nothing needs to be done by the writer if he
// doesn't need to customize it.
ExplainMatchResultTo(impl_, x, os);
}
private:
const Impl impl_;
};
Impl impl_;
};
// Creates a matcher from its implementation. This is easier to use
// than the Matcher<T> constructor as it doesn't require you to
// explicitly write the template argument, e.g.
//
// MakeMatcher(foo);
// vs
// Matcher<const string&>(foo);
template <typename T>
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
return Matcher<T>(impl);
};
// Creates a polymorphic matcher from its implementation. This is
// easier to use than the PolymorphicMatcher<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicMatcher(foo);
// vs
// PolymorphicMatcher<TypeOfFoo>(foo);
template <class Impl>
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
return PolymorphicMatcher<Impl>(impl);
}
// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>. It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M>
Matcher<T> MatcherCast(M m);
// TODO(vladl@google.com): Modify the implementation to reject casting
// Matcher<int> to Matcher<double>.
// Implements SafeMatcherCast().
//
// This overload handles polymorphic matchers only since monomorphic
// matchers are handled by the next one.
template <typename T, typename M>
inline Matcher<T> SafeMatcherCast(M polymorphic_matcher) {
return Matcher<T>(polymorphic_matcher);
}
// This overload handles monomorphic matchers.
//
// In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U.
template <typename T, typename U>
Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
// Enforce that T can be implicitly converted to U.
GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
T_must_be_implicitly_convertible_to_U);
// Enforce that we are not converting a non-reference type T to a reference
// type U.
GMOCK_COMPILE_ASSERT_(
internal::is_reference<T>::value || !internal::is_reference<U>::value,
cannot_convert_non_referentce_arg_to_reference);
// In case both T and U are arithmetic types, enforce that the
// conversion is not lossy.
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
GMOCK_COMPILE_ASSERT_(
kTIsOther || kUIsOther ||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
conversion_of_arithmetic_types_must_be_lossless);
return MatcherCast<T>(matcher);
}
// A<T>() returns a matcher that matches any value of type T.
template <typename T>
Matcher<T> A();
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// Appends the explanation on the result of matcher.Matches(value) to
// os iff the explanation is not empty.
template <typename T>
void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
::std::ostream* os) {
::std::stringstream reason;
matcher.ExplainMatchResultTo(value, &reason);
const internal::string s = reason.str();
if (s != "") {
*os << " (" << s << ")";
}
}
// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N>
class TuplePrefix {
public:
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
// iff the first N fields of matcher_tuple matches the first N
// fields of value_tuple, respectively.
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
using ::std::tr1::get;
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
&& get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
}
// TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
// describes failures in matching the first N fields of matchers
// against the first N fields of values. If there is no failure,
// nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
using ::std::tr1::tuple_element;
using ::std::tr1::get;
// First, describes failures in the first N - 1 fields.
TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
// Then describes the failure (if any) in the (N - 1)-th (0-based)
// field.
typename tuple_element<N - 1, MatcherTuple>::type matcher =
get<N - 1>(matchers);
typedef typename tuple_element<N - 1, ValueTuple>::type Value;
Value value = get<N - 1>(values);
if (!matcher.Matches(value)) {
// TODO(wan): include in the message the name of the parameter
// as used in MOCK_METHOD*() when possible.
*os << " Expected arg #" << N - 1 << ": ";
get<N - 1>(matchers).DescribeTo(os);
*os << "\n Actual: ";
// We remove the reference in type Value to prevent the
// universal printer from printing the address of value, which
// isn't interesting to the user most of the time. The
// matcher's ExplainMatchResultTo() method handles the case when
// the address is interesting.
internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
Print(value, os);
ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
*os << "\n";
}
}
};
// The base case.
template <>
class TuplePrefix<0> {
public:
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& /* matcher_tuple */,
const ValueTuple& /* value_tuple */) {
return true;
}
template <typename MatcherTuple, typename ValueTuple>
static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
const ValueTuple& /* values */,
::std::ostream* /* os */) {}
};
// TupleMatches(matcher_tuple, value_tuple) returns true iff all
// matchers in matcher_tuple match the corresponding fields in
// value_tuple. It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple>
bool TupleMatches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
using ::std::tr1::tuple_size;
// Makes sure that matcher_tuple and value_tuple have the same
// number of fields.
GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
tuple_size<ValueTuple>::value,
matcher_and_value_have_different_numbers_of_fields);
return TuplePrefix<tuple_size<ValueTuple>::value>::
Matches(matcher_tuple, value_tuple);
}
// Describes failures in matching matchers against values. If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
using ::std::tr1::tuple_size;
TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
matchers, values, os);
}
// The MatcherCastImpl class template is a helper for implementing
// MatcherCast(). We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).
// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)).
template <typename T, typename M>
class MatcherCastImpl {
public:
static Matcher<T> Cast(M polymorphic_matcher) {
return Matcher<T>(polymorphic_matcher);
}
};
// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher. This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U>
class MatcherCastImpl<T, Matcher<U> > {
public:
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
return Matcher<T>(new Impl(source_matcher));
}
private:
class Impl : public MatcherInterface<T> {
public:
explicit Impl(const Matcher<U>& source_matcher)
: source_matcher_(source_matcher) {}
// We delegate the matching logic to the source matcher.
virtual bool Matches(T x) const {
return source_matcher_.Matches(static_cast<U>(x));
}
virtual void DescribeTo(::std::ostream* os) const {
source_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
source_matcher_.DescribeNegationTo(os);
}
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
}
private:
const Matcher<U> source_matcher_;
};
};
// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T>
class MatcherCastImpl<T, Matcher<T> > {
public:
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
};
// Implements A<T>().
template <typename T>
class AnyMatcherImpl : public MatcherInterface<T> {
public:
virtual bool Matches(T /* x */) const { return true; }
virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
virtual void DescribeNegationTo(::std::ostream* os) const {
// This is mostly for completeness' safe, as it's not very useful
// to write Not(A<bool>()). However we cannot completely rule out
// such a possibility, and it doesn't hurt to be prepared.
*os << "never matches";
}
};
// Implements _, a matcher that matches any value of any
// type. This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
public:
template <typename T>
operator Matcher<T>() const { return A<T>(); }
};
// Implements a matcher that compares a given value with a
// pre-supplied value using one of the ==, <=, <, etc, operators. The
// two values being compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq(5) can be
// used to match an int, a short, a double, etc). Therefore we use
// a template type conversion operator in the implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
//
// The following template definition assumes that the Rhs parameter is
// a "bare" type (i.e. neither 'const T' nor 'T&').
#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
template <typename Rhs> class name##Matcher { \
public: \
explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
template <typename Lhs> \
operator Matcher<Lhs>() const { \
return MakeMatcher(new Impl<Lhs>(rhs_)); \
} \
private: \
template <typename Lhs> \
class Impl : public MatcherInterface<Lhs> { \
public: \
explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
virtual void DescribeTo(::std::ostream* os) const { \
*os << "is " relation " "; \
UniversalPrinter<Rhs>::Print(rhs_, os); \
} \
virtual void DescribeNegationTo(::std::ostream* os) const { \
*os << "is not " relation " "; \
UniversalPrinter<Rhs>::Print(rhs_, os); \
} \
private: \
Rhs rhs_; \
}; \
Rhs rhs_; \
}
// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
// respectively.
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
// Implements the polymorphic NotNull() matcher, which matches any
// pointer that is not NULL.
class NotNullMatcher {
public:
template <typename T>
bool Matches(T* p) const { return p != NULL; }
void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "is NULL";
}
};
// Ref(variable) matches any argument that is a reference to
// 'variable'. This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable). It can
// only be instantiated with a reference type. This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument. For example, the following will righteously cause a
// compiler error:
//
// int n;
// Matcher<int> m1 = Ref(n); // This won't compile.
// Matcher<int&> m2 = Ref(n); // This will compile.
template <typename T>
class RefMatcher;
template <typename T>
class RefMatcher<T&> {
// Google Mock is a generic framework and thus needs to support
// mocking any function types, including those that take non-const
// reference arguments. Therefore the template parameter T (and
// Super below) can be instantiated to either a const type or a
// non-const type.
public:
// RefMatcher() takes a T& instead of const T&, as we want the
// compiler to catch using Ref(const_value) as a matcher for a
// non-const reference.
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
template <typename Super>
operator Matcher<Super&>() const {
// By passing object_ (type T&) to Impl(), which expects a Super&,
// we make sure that Super is a super type of T. In particular,
// this catches using Ref(const_value) as a matcher for a
// non-const reference, as you cannot implicitly convert a const
// reference to a non-const reference.
return MakeMatcher(new Impl<Super>(object_));
}
private:
template <typename Super>
class Impl : public MatcherInterface<Super&> {
public:
explicit Impl(Super& x) : object_(x) {} // NOLINT
// Matches() takes a Super& (as opposed to const Super&) in
// order to match the interface MatcherInterface<Super&>.
virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT
virtual void DescribeTo(::std::ostream* os) const {
*os << "references the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "does not reference the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
virtual void ExplainMatchResultTo(Super& x, // NOLINT
::std::ostream* os) const {
*os << "is located @" << static_cast<const void*>(&x);
}
private:
const Super& object_;
};
T& object_;
};
// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
return String::CaseInsensitiveCStringEquals(lhs, rhs);
}
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
}
// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType>
bool CaseInsensitiveStringEquals(const StringType& s1,
const StringType& s2) {
// Are the heads equal?
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
return false;
}
// Skip the equal heads.
const typename StringType::value_type nul = 0;
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
// Are we at the end of either s1 or s2?
if (i1 == StringType::npos || i2 == StringType::npos) {
return i1 == i2;
}
// Are the tails equal?
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
}
// String matchers.
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType>
class StrEqualityMatcher {
public:
typedef typename StringType::const_pointer ConstCharPointer;
StrEqualityMatcher(const StringType& str, bool expect_eq,
bool case_sensitive)
: string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
// When expect_eq_ is true, returns true iff s is equal to string_;
// otherwise returns true iff s is not equal to string_.
bool Matches(ConstCharPointer s) const {
if (s == NULL) {
return !expect_eq_;
}
return Matches(StringType(s));
}
bool Matches(const StringType& s) const {
const bool eq = case_sensitive_ ? s == string_ :
CaseInsensitiveStringEquals(s, string_);
return expect_eq_ == eq;
}
void DescribeTo(::std::ostream* os) const {
DescribeToHelper(expect_eq_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
DescribeToHelper(!expect_eq_, os);
}
private:
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
*os << "is ";
if (!expect_eq) {
*os << "not ";
}
*os << "equal to ";
if (!case_sensitive_) {
*os << "(ignoring case) ";
}
UniversalPrinter<StringType>::Print(string_, os);
}
const StringType string_;
const bool expect_eq_;
const bool case_sensitive_;
};
// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class HasSubstrMatcher {
public:
typedef typename StringType::const_pointer ConstCharPointer;
explicit HasSubstrMatcher(const StringType& substring)
: substring_(substring) {}
// These overloaded methods allow HasSubstr(substring) to be used as a
// Matcher<T> as long as T can be converted to string. Returns true
// iff s contains substring_ as a substring.
bool Matches(ConstCharPointer s) const {
return s != NULL && Matches(StringType(s));
}
bool Matches(const StringType& s) const {
return s.find(substring_) != StringType::npos;
}
// Describes what this matcher matches.
void DescribeTo(::std::ostream* os) const {
*os << "has substring ";
UniversalPrinter<StringType>::Print(substring_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "has no substring ";
UniversalPrinter<StringType>::Print(substring_, os);
}
private:
const StringType substring_;
};
// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class StartsWithMatcher {
public:
typedef typename StringType::const_pointer ConstCharPointer;
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
}
// These overloaded methods allow StartsWith(prefix) to be used as a
// Matcher<T> as long as T can be converted to string. Returns true
// iff s starts with prefix_.
bool Matches(ConstCharPointer s) const {
return s != NULL && Matches(StringType(s));
}
bool Matches(const StringType& s) const {
return s.length() >= prefix_.length() &&
s.substr(0, prefix_.length()) == prefix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "starts with ";
UniversalPrinter<StringType>::Print(prefix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't start with ";
UniversalPrinter<StringType>::Print(prefix_, os);
}
private:
const StringType prefix_;
};
// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class EndsWithMatcher {
public:
typedef typename StringType::const_pointer ConstCharPointer;
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
// These overloaded methods allow EndsWith(suffix) to be used as a
// Matcher<T> as long as T can be converted to string. Returns true
// iff s ends with suffix_.
bool Matches(ConstCharPointer s) const {
return s != NULL && Matches(StringType(s));
}
bool Matches(const StringType& s) const {
return s.length() >= suffix_.length() &&
s.substr(s.length() - suffix_.length()) == suffix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "ends with ";
UniversalPrinter<StringType>::Print(suffix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't end with ";
UniversalPrinter<StringType>::Print(suffix_, os);
}
private:
const StringType suffix_;
};
#if GMOCK_HAS_REGEX
// Implements polymorphic matchers MatchesRegex(regex) and
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
// T can be converted to a string.
class MatchesRegexMatcher {
public:
MatchesRegexMatcher(const RE* regex, bool full_match)
: regex_(regex), full_match_(full_match) {}
// These overloaded methods allow MatchesRegex(regex) to be used as
// a Matcher<T> as long as T can be converted to string. Returns
// true iff s matches regular expression regex. When full_match_ is
// true, a full match is done; otherwise a partial match is done.
bool Matches(const char* s) const {
return s != NULL && Matches(internal::string(s));
}
bool Matches(const internal::string& s) const {
return full_match_ ? RE::FullMatch(s, *regex_) :
RE::PartialMatch(s, *regex_);
}
void DescribeTo(::std::ostream* os) const {
*os << (full_match_ ? "matches" : "contains")
<< " regular expression ";
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't " << (full_match_ ? "match" : "contain")
<< " regular expression ";
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
}
private:
const internal::linked_ptr<const RE> regex_;
const bool full_match_;
};
#endif // GMOCK_HAS_REGEX
// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators. The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a tuple<int, short>, a tuple<const long&, double>,
// etc). Therefore we use a template type conversion operator in the
// implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op) \
class name##2Matcher { \
public: \
template <typename T1, typename T2> \
operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
return MakeMatcher(new Impl<T1, T2>); \
} \
private: \
template <typename T1, typename T2> \
class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
public: \
virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
} \
virtual void DescribeTo(::std::ostream* os) const { \
*os << "are a pair (x, y) where x " #op " y"; \
} \
virtual void DescribeNegationTo(::std::ostream* os) const { \
*os << "are a pair (x, y) where x " #op " y is false"; \
} \
}; \
}
// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==);
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=);
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >);
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=);
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <);
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=);
#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
// Implements the Not(...) matcher for a particular argument type T.
// We do not nest it inside the NotMatcher class template, as that
// will prevent different instantiations of NotMatcher from sharing
// the same NotMatcherImpl<T> class.
template <typename T>
class NotMatcherImpl : public MatcherInterface<T> {
public:
explicit NotMatcherImpl(const Matcher<T>& matcher)
: matcher_(matcher) {}
virtual bool Matches(T x) const {
return !matcher_.Matches(x);
}
virtual void DescribeTo(::std::ostream* os) const {
matcher_.DescribeNegationTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
matcher_.DescribeTo(os);
}
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
matcher_.ExplainMatchResultTo(x, os);
}
private:
const Matcher<T> matcher_;
};
// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher>
class NotMatcher {
public:
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
// This template type conversion operator allows Not(m) to be used
// to match any type m can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
}
private:
InnerMatcher matcher_;
};
// Implements the AllOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the BothOfMatcher class template, as
// that will prevent different instantiations of BothOfMatcher from
// sharing the same BothOfMatcherImpl<T> class.
template <typename T>
class BothOfMatcherImpl : public MatcherInterface<T> {
public:
BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
virtual bool Matches(T x) const {
return matcher1_.Matches(x) && matcher2_.Matches(x);
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeTo(os);
*os << ") and (";
matcher2_.DescribeTo(os);
*os << ")";
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "not ";
DescribeTo(os);
}
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
if (Matches(x)) {
// When both matcher1_ and matcher2_ match x, we need to
// explain why *both* of them match.
::std::stringstream ss1;
matcher1_.ExplainMatchResultTo(x, &ss1);
const internal::string s1 = ss1.str();
::std::stringstream ss2;
matcher2_.ExplainMatchResultTo(x, &ss2);
const internal::string s2 = ss2.str();
if (s1 == "") {
*os << s2;
} else {
*os << s1;
if (s2 != "") {
*os << "; " << s2;
}
}
} else {
// Otherwise we only need to explain why *one* of them fails
// to match.
if (!matcher1_.Matches(x)) {
matcher1_.ExplainMatchResultTo(x, os);
} else {
matcher2_.ExplainMatchResultTo(x, os);
}
}
}
private:
const Matcher<T> matcher1_;
const Matcher<T> matcher2_;
};
// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
// matches a value that matches all of the matchers m_1, ..., and m_n.
template <typename Matcher1, typename Matcher2>
class BothOfMatcher {
public:
BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
// This template type conversion operator allows a
// BothOfMatcher<Matcher1, Matcher2> object to match any type that
// both Matcher1 and Matcher2 can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
SafeMatcherCast<T>(matcher2_)));
}
private:
Matcher1 matcher1_;
Matcher2 matcher2_;
};
// Implements the AnyOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the AnyOfMatcher class template, as
// that will prevent different instantiations of AnyOfMatcher from
// sharing the same EitherOfMatcherImpl<T> class.
template <typename T>
class EitherOfMatcherImpl : public MatcherInterface<T> {
public:
EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
virtual bool Matches(T x) const {
return matcher1_.Matches(x) || matcher2_.Matches(x);
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeTo(os);
*os << ") or (";
matcher2_.DescribeTo(os);
*os << ")";
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "not ";
DescribeTo(os);
}
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
if (Matches(x)) {
// If either matcher1_ or matcher2_ matches x, we just need
// to explain why *one* of them matches.
if (matcher1_.Matches(x)) {
matcher1_.ExplainMatchResultTo(x, os);
} else {
matcher2_.ExplainMatchResultTo(x, os);
}
} else {
// Otherwise we need to explain why *neither* matches.
::std::stringstream ss1;
matcher1_.ExplainMatchResultTo(x, &ss1);
const internal::string s1 = ss1.str();
::std::stringstream ss2;
matcher2_.ExplainMatchResultTo(x, &ss2);
const internal::string s2 = ss2.str();
if (s1 == "") {
*os << s2;
} else {
*os << s1;
if (s2 != "") {
*os << "; " << s2;
}
}
}
}
private:
const Matcher<T> matcher1_;
const Matcher<T> matcher2_;
};
// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
// matches a value that matches at least one of the matchers m_1, ...,
// and m_n.
template <typename Matcher1, typename Matcher2>
class EitherOfMatcher {
public:
EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
// This template type conversion operator allows a
// EitherOfMatcher<Matcher1, Matcher2> object to match any type that
// both Matcher1 and Matcher2 can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new EitherOfMatcherImpl<T>(
SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
}
private:
Matcher1 matcher1_;
Matcher2 matcher2_;
};
// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate>
class TrulyMatcher {
public:
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
// This method template allows Truly(pred) to be used as a matcher
// for type T where T is the argument type of predicate 'pred'. The
// argument is passed by reference as the predicate may be
// interested in the address of the argument.
template <typename T>
bool Matches(T& x) const { // NOLINT
2009-02-23 23:37:29 +00:00
#if GTEST_OS_WINDOWS
// MSVC warns about converting a value into bool (warning 4800).
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable:4800) // Temporarily disables warning 4800.
#endif // GTEST_OS_WINDOWS
return predicate_(x);
2009-02-23 23:37:29 +00:00
#if GTEST_OS_WINDOWS
#pragma warning(pop) // Restores the warning state.
#endif // GTEST_OS_WINDOWS
}
void DescribeTo(::std::ostream* os) const {
*os << "satisfies the given predicate";
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't satisfy the given predicate";
}
private:
Predicate predicate_;
};
// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M>
class MatcherAsPredicate {
public:
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
// This template operator() allows Matches(m) to be used as a
// predicate on type T where m is a matcher on type T.
//
// The argument x is passed by reference instead of by value, as
// some matcher may be interested in its address (e.g. as in
// Matches(Ref(n))(x)).
template <typename T>
bool operator()(const T& x) const {
// We let matcher_ commit to a particular type here instead of
// when the MatcherAsPredicate object was constructed. This
// allows us to write Matches(m) where m is a polymorphic matcher
// (e.g. Eq(5)).
//
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
// compile when matcher_ has type Matcher<const T&>; if we write
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
// when matcher_ has type Matcher<T>; if we just write
// matcher_.Matches(x), it won't compile when matcher_ is
// polymorphic, e.g. Eq(5).
//
// MatcherCast<const T&>() is necessary for making the code work
// in all of the above situations.
return MatcherCast<const T&>(matcher_).Matches(x);
}
private:
M matcher_;
};
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
// argument M must be a type that can be converted to a matcher.
template <typename M>
class PredicateFormatterFromMatcher {
public:
explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
// This template () operator allows a PredicateFormatterFromMatcher
// object to act as a predicate-formatter suitable for using with
// Google Test's EXPECT_PRED_FORMAT1() macro.
template <typename T>
AssertionResult operator()(const char* value_text, const T& x) const {
// We convert matcher_ to a Matcher<const T&> *now* instead of
// when the PredicateFormatterFromMatcher object was constructed,
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
// know which type to instantiate it to until we actually see the
// type of x here.
//
// We write MatcherCast<const T&>(matcher_) instead of
// Matcher<const T&>(matcher_), as the latter won't compile when
// matcher_ has type Matcher<T> (e.g. An<int>()).
const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
if (matcher.Matches(x)) {
return AssertionSuccess();
} else {
::std::stringstream ss;
ss << "Value of: " << value_text << "\n"
<< "Expected: ";
matcher.DescribeTo(&ss);
ss << "\n Actual: ";
UniversalPrinter<T>::Print(x, &ss);
ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
return AssertionFailure(Message() << ss.str());
}
}
private:
const M matcher_;
};
// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type. This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
template <typename M>
inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(const M& matcher) {
return PredicateFormatterFromMatcher<M>(matcher);
}
// Implements the polymorphic floating point equality matcher, which
// matches two float values using ULP-based approximation. The
// template is meant to be instantiated with FloatType being either
// float or double.
template <typename FloatType>
class FloatingEqMatcher {
public:
// Constructor for FloatingEqMatcher.
// The matcher's input will be compared with rhs. The matcher treats two
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
// equality comparisons between NANs will always return false.
FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
// Implements floating point equality matcher as a Matcher<T>.
template <typename T>
class Impl : public MatcherInterface<T> {
public:
Impl(FloatType rhs, bool nan_eq_nan) :
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
virtual bool Matches(T value) const {
const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
// Compares NaNs first, if nan_eq_nan_ is true.
if (nan_eq_nan_ && lhs.is_nan()) {
return rhs.is_nan();
}
return lhs.AlmostEquals(rhs);
}
virtual void DescribeTo(::std::ostream* os) const {
// os->precision() returns the previously set precision, which we
// store to restore the ostream to its original configuration
// after outputting.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
if (nan_eq_nan_) {
*os << "is NaN";
} else {
*os << "never matches";
}
} else {
*os << "is approximately " << rhs_;
}
os->precision(old_precision);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
// As before, get original precision.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
if (nan_eq_nan_) {
*os << "is not NaN";
} else {
*os << "is anything";
}
} else {
*os << "is not approximately " << rhs_;
}
// Restore original precision.
os->precision(old_precision);
}
private:
const FloatType rhs_;
const bool nan_eq_nan_;
};
// The following 3 type conversion operators allow FloatEq(rhs) and
// NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
// (While Google's C++ coding style doesn't allow arguments passed
// by non-const reference, we may see them in code not conforming to
// the style. Therefore Google Mock needs to support them.)
operator Matcher<FloatType>() const {
return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
}
operator Matcher<const FloatType&>() const {
return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
}
operator Matcher<FloatType&>() const {
return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
}
private:
const FloatType rhs_;
const bool nan_eq_nan_;
};
// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m. The pointer can be either raw or smart.
template <typename InnerMatcher>
class PointeeMatcher {
public:
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointee(m) to be
// used as a matcher for any pointer type whose pointee type is
// compatible with the inner matcher, where type Pointer can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointee().
template <typename Pointer>
operator Matcher<Pointer>() const {
return MakeMatcher(new Impl<Pointer>(matcher_));
}
private:
// The monomorphic implementation that works for a particular pointer type.
template <typename Pointer>
class Impl : public MatcherInterface<Pointer> {
public:
typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT
GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
explicit Impl(const InnerMatcher& matcher)
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
virtual bool Matches(Pointer p) const {
return GetRawPointer(p) != NULL && matcher_.Matches(*p);
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "points to a value that ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "does not point to a value that ";
matcher_.DescribeTo(os);
}
virtual void ExplainMatchResultTo(Pointer pointer,
::std::ostream* os) const {
if (GetRawPointer(pointer) == NULL)
return;
::std::stringstream ss;
matcher_.ExplainMatchResultTo(*pointer, &ss);
const internal::string s = ss.str();
if (s != "") {
*os << "points to a value that " << s;
}
}
private:
const Matcher<const Pointee&> matcher_;
};
const InnerMatcher matcher_;
};
// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType>
class FieldMatcher {
public:
FieldMatcher(FieldType Class::*field,
const Matcher<const FieldType&>& matcher)
: field_(field), matcher_(matcher) {}
// Returns true iff the inner matcher matches obj.field.
bool Matches(const Class& obj) const {
return matcher_.Matches(obj.*field_);
}
// Returns true iff the inner matcher matches obj->field.
bool Matches(const Class* p) const {
return (p != NULL) && matcher_.Matches(p->*field_);
}
void DescribeTo(::std::ostream* os) const {
*os << "the given field ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "the given field ";
matcher_.DescribeNegationTo(os);
}
// The first argument of ExplainMatchResultTo() is needed to help
// Symbian's C++ compiler choose which overload to use. Its type is
// true_type iff the Field() matcher is used to match a pointer.
void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
::std::ostream* os) const {
::std::stringstream ss;
matcher_.ExplainMatchResultTo(obj.*field_, &ss);
const internal::string s = ss.str();
if (s != "") {
*os << "the given field " << s;
}
}
void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
::std::ostream* os) const {
if (p != NULL) {
// Since *p has a field, it must be a class/struct/union type
// and thus cannot be a pointer. Therefore we pass false_type()
// as the first argument.
ExplainMatchResultTo(false_type(), *p, os);
}
}
private:
const FieldType Class::*field_;
const Matcher<const FieldType&> matcher_;
};
// Explains the result of matching an object or pointer against a field matcher.
template <typename Class, typename FieldType, typename T>
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
const T& value, ::std::ostream* os) {
matcher.ExplainMatchResultTo(
typename ::testing::internal::is_pointer<T>::type(), value, os);
}
// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
template <typename Class, typename PropertyType>
class PropertyMatcher {
public:
// The property may have a reference type, so 'const PropertyType&'
// may cause double references and fail to compile. That's why we
// need GMOCK_REFERENCE_TO_CONST, which works regardless of
// PropertyType being a reference or not.
typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
PropertyMatcher(PropertyType (Class::*property)() const,
const Matcher<RefToConstProperty>& matcher)
: property_(property), matcher_(matcher) {}
// Returns true iff obj.property() matches the inner matcher.
bool Matches(const Class& obj) const {
return matcher_.Matches((obj.*property_)());
}
// Returns true iff p->property() matches the inner matcher.
bool Matches(const Class* p) const {
return (p != NULL) && matcher_.Matches((p->*property_)());
}
void DescribeTo(::std::ostream* os) const {
*os << "the given property ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "the given property ";
matcher_.DescribeNegationTo(os);
}
// The first argument of ExplainMatchResultTo() is needed to help
// Symbian's C++ compiler choose which overload to use. Its type is
// true_type iff the Property() matcher is used to match a pointer.
void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
::std::ostream* os) const {
::std::stringstream ss;
matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
const internal::string s = ss.str();
if (s != "") {
*os << "the given property " << s;
}
}
void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
::std::ostream* os) const {
if (p != NULL) {
// Since *p has a property method, it must be a
// class/struct/union type and thus cannot be a pointer.
// Therefore we pass false_type() as the first argument.
ExplainMatchResultTo(false_type(), *p, os);
}
}
private:
PropertyType (Class::*property_)() const;
const Matcher<RefToConstProperty> matcher_;
};
// Explains the result of matching an object or pointer against a
// property matcher.
template <typename Class, typename PropertyType, typename T>
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
const T& value, ::std::ostream* os) {
matcher.ExplainMatchResultTo(
typename ::testing::internal::is_pointer<T>::type(), value, os);
}
// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
// Functor classes have to typedef argument_type and result_type
// to be compatible with ResultOf.
template <typename Functor>
struct CallableTraits {
typedef typename Functor::result_type ResultType;
typedef Functor StorageType;
static void CheckIsValid(Functor functor) {}
template <typename T>
static ResultType Invoke(Functor f, T arg) { return f(arg); }
};
// Specialization for function pointers.
template <typename ArgType, typename ResType>
struct CallableTraits<ResType(*)(ArgType)> {
typedef ResType ResultType;
typedef ResType(*StorageType)(ArgType);
static void CheckIsValid(ResType(*f)(ArgType)) {
GTEST_CHECK_(f != NULL)
<< "NULL function pointer is passed into ResultOf().";
}
template <typename T>
static ResType Invoke(ResType(*f)(ArgType), T arg) {
return (*f)(arg);
}
};
// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable>
class ResultOfMatcher {
public:
typedef typename CallableTraits<Callable>::ResultType ResultType;
ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
: callable_(callable), matcher_(matcher) {
CallableTraits<Callable>::CheckIsValid(callable_);
}
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new Impl<T>(callable_, matcher_));
}
private:
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
template <typename T>
class Impl : public MatcherInterface<T> {
public:
Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
: callable_(callable), matcher_(matcher) {}
// Returns true iff callable_(obj) matches the inner matcher.
// The calling syntax is different for different types of callables
// so we abstract it in CallableTraits<Callable>::Invoke().
virtual bool Matches(T obj) const {
return matcher_.Matches(
CallableTraits<Callable>::template Invoke<T>(callable_, obj));
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "result of the given callable ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "result of the given callable ";
matcher_.DescribeNegationTo(os);
}
virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
::std::stringstream ss;
matcher_.ExplainMatchResultTo(
CallableTraits<Callable>::template Invoke<T>(callable_, obj),
&ss);
const internal::string s = ss.str();
if (s != "")
*os << "result of the given callable " << s;
}
private:
// Functors often define operator() as non-const method even though
// they are actualy stateless. But we need to use them even when
// 'this' is a const pointer. It's the user's responsibility not to
// use stateful callables with ResultOf(), which does't guarantee
// how many times the callable will be invoked.
mutable CallableStorageType callable_;
const Matcher<ResultType> matcher_;
}; // class Impl
const CallableStorageType callable_;
const Matcher<ResultType> matcher_;
};
// Explains the result of matching a value against a functor matcher.
template <typename T, typename Callable>
void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
T obj, ::std::ostream* os) {
matcher.ExplainMatchResultTo(obj, os);
}
2009-01-16 01:13:50 +00:00
// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container>
class ContainerEqMatcher {
public:
typedef internal::StlContainerView<Container> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
// We make a copy of rhs in case the elements in it are modified
// after this matcher is created.
explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
// Makes sure the user doesn't instantiate this class template
// with a const or reference type.
testing::StaticAssertTypeEq<Container,
GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))>();
}
template <typename LhsContainer>
bool Matches(const LhsContainer& lhs) const {
// GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
// that causes LhsContainer to be a const type sometimes.
typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
LhsView;
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
return lhs_stl_container == rhs_;
}
2009-01-16 01:13:50 +00:00
void DescribeTo(::std::ostream* os) const {
*os << "equals ";
UniversalPrinter<StlContainer>::Print(rhs_, os);
2009-01-16 01:13:50 +00:00
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "does not equal ";
UniversalPrinter<StlContainer>::Print(rhs_, os);
2009-01-16 01:13:50 +00:00
}
template <typename LhsContainer>
void ExplainMatchResultTo(const LhsContainer& lhs,
2009-01-16 01:13:50 +00:00
::std::ostream* os) const {
// GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
// that causes LhsContainer to be a const type sometimes.
typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
LhsView;
typedef typename LhsView::type LhsStlContainer;
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2009-01-16 01:13:50 +00:00
// Something is different. Check for missing values first.
bool printed_header = false;
for (typename LhsStlContainer::const_iterator it =
lhs_stl_container.begin();
it != lhs_stl_container.end(); ++it) {
if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
rhs_.end()) {
2009-01-16 01:13:50 +00:00
if (printed_header) {
*os << ", ";
} else {
*os << "Only in actual: ";
printed_header = true;
}
UniversalPrinter<typename LhsStlContainer::value_type>::Print(*it, os);
2009-01-16 01:13:50 +00:00
}
}
// Now check for extra values.
bool printed_header2 = false;
for (typename StlContainer::const_iterator it = rhs_.begin();
2009-01-16 01:13:50 +00:00
it != rhs_.end(); ++it) {
if (internal::ArrayAwareFind(
lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
lhs_stl_container.end()) {
2009-01-16 01:13:50 +00:00
if (printed_header2) {
*os << ", ";
} else {
*os << (printed_header ? "; not" : "Not") << " in actual: ";
printed_header2 = true;
}
UniversalPrinter<typename StlContainer::value_type>::Print(*it, os);
2009-01-16 01:13:50 +00:00
}
}
}
private:
const StlContainer rhs_;
2009-01-16 01:13:50 +00:00
};
template <typename LhsContainer, typename Container>
2009-01-16 01:13:50 +00:00
void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
const LhsContainer& lhs,
2009-01-16 01:13:50 +00:00
::std::ostream* os) {
matcher.ExplainMatchResultTo(lhs, os);
}
// Implements Contains(element_matcher) for the given argument type Container.
template <typename Container>
class ContainsMatcherImpl : public MatcherInterface<Container> {
public:
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
typedef StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
template <typename InnerMatcher>
explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
// Returns true iff 'container' matches.
virtual bool Matches(Container container) const {
StlContainerReference stl_container = View::ConstReference(container);
for (typename StlContainer::const_iterator it = stl_container.begin();
it != stl_container.end(); ++it) {
if (inner_matcher_.Matches(*it))
return true;
}
return false;
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "contains at least one element that ";
inner_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't contain any element that ";
inner_matcher_.DescribeTo(os);
}
// Explains why 'container' matches, or doesn't match, this matcher.
virtual void ExplainMatchResultTo(Container container,
::std::ostream* os) const {
StlContainerReference stl_container = View::ConstReference(container);
// We need to explain which (if any) element matches inner_matcher_.
typename StlContainer::const_iterator it = stl_container.begin();
for (size_t i = 0; it != stl_container.end(); ++it, ++i) {
if (inner_matcher_.Matches(*it)) {
*os << "element " << i << " matches";
return;
}
}
}
private:
const Matcher<const Element&> inner_matcher_;
};
// Implements polymorphic Contains(element_matcher).
template <typename M>
class ContainsMatcher {
public:
explicit ContainsMatcher(M m) : inner_matcher_(m) {}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
}
private:
const M inner_matcher_;
};
// Implements Key(inner_matcher) for the given argument pair type.
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename PairType>
class KeyMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
typedef typename RawPairType::first_type KeyType;
template <typename InnerMatcher>
explicit KeyMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
}
// Returns true iff 'key_value.first' (the key) matches the inner matcher.
virtual bool Matches(PairType key_value) const {
return inner_matcher_.Matches(key_value.first);
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "has a key that ";
inner_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't have a key that ";
inner_matcher_.DescribeTo(os);
}
// Explains why 'key_value' matches, or doesn't match, this matcher.
virtual void ExplainMatchResultTo(PairType key_value,
::std::ostream* os) const {
inner_matcher_.ExplainMatchResultTo(key_value.first, os);
}
private:
const Matcher<const KeyType&> inner_matcher_;
};
// Implements polymorphic Key(matcher_for_key).
template <typename M>
class KeyMatcher {
public:
explicit KeyMatcher(M m) : matcher_for_key_(m) {}
template <typename PairType>
operator Matcher<PairType>() const {
return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
}
private:
const M matcher_for_key_;
};
// Implements Pair(first_matcher, second_matcher) for the given argument pair
// type with its two matchers. See Pair() function below.
template <typename PairType>
class PairMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
typedef typename RawPairType::first_type FirstType;
typedef typename RawPairType::second_type SecondType;
template <typename FirstMatcher, typename SecondMatcher>
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(
testing::SafeMatcherCast<const FirstType&>(first_matcher)),
second_matcher_(
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
}
// Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
// matches second_matcher.
virtual bool Matches(PairType a_pair) const {
return first_matcher_.Matches(a_pair.first) &&
second_matcher_.Matches(a_pair.second);
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "has a first field that ";
first_matcher_.DescribeTo(os);
*os << ", and has a second field that ";
second_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "has a first field that ";
first_matcher_.DescribeNegationTo(os);
*os << ", or has a second field that ";
second_matcher_.DescribeNegationTo(os);
}
// Explains why 'a_pair' matches, or doesn't match, this matcher.
virtual void ExplainMatchResultTo(PairType a_pair,
::std::ostream* os) const {
::std::stringstream ss1;
first_matcher_.ExplainMatchResultTo(a_pair.first, &ss1);
internal::string s1 = ss1.str();
if (s1 != "") {
s1 = "the first field " + s1;
}
::std::stringstream ss2;
second_matcher_.ExplainMatchResultTo(a_pair.second, &ss2);
internal::string s2 = ss2.str();
if (s2 != "") {
s2 = "the second field " + s2;
}
*os << s1;
if (s1 != "" && s2 != "") {
*os << ", and ";
}
*os << s2;
}
private:
const Matcher<const FirstType&> first_matcher_;
const Matcher<const SecondType&> second_matcher_;
};
// Implements polymorphic Pair(first_matcher, second_matcher).
template <typename FirstMatcher, typename SecondMatcher>
class PairMatcher {
public:
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(first_matcher), second_matcher_(second_matcher) {}
template <typename PairType>
operator Matcher<PairType> () const {
return MakeMatcher(
new PairMatcherImpl<PairType>(
first_matcher_, second_matcher_));
}
private:
const FirstMatcher first_matcher_;
const SecondMatcher second_matcher_;
};
// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
public:
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
typedef internal::StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter>
ElementsAreMatcherImpl(InputIter first, size_t count) {
matchers_.reserve(count);
InputIter it = first;
for (size_t i = 0; i != count; ++i, ++it) {
matchers_.push_back(MatcherCast<const Element&>(*it));
}
}
// Returns true iff 'container' matches.
virtual bool Matches(Container container) const {
StlContainerReference stl_container = View::ConstReference(container);
if (stl_container.size() != count())
return false;
typename StlContainer::const_iterator it = stl_container.begin();
for (size_t i = 0; i != count(); ++it, ++i) {
if (!matchers_[i].Matches(*it))
return false;
}
return true;
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
if (count() == 0) {
*os << "is empty";
} else if (count() == 1) {
*os << "has 1 element that ";
matchers_[0].DescribeTo(os);
} else {
*os << "has " << Elements(count()) << " where\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element " << i << " ";
matchers_[i].DescribeTo(os);
if (i + 1 < count()) {
*os << ",\n";
}
}
}
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
if (count() == 0) {
*os << "is not empty";
return;
}
*os << "does not have " << Elements(count()) << ", or\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element " << i << " ";
matchers_[i].DescribeNegationTo(os);
if (i + 1 < count()) {
*os << ", or\n";
}
}
}
// Explains why 'container' matches, or doesn't match, this matcher.
virtual void ExplainMatchResultTo(Container container,
::std::ostream* os) const {
StlContainerReference stl_container = View::ConstReference(container);
if (Matches(container)) {
// We need to explain why *each* element matches (the obvious
// ones can be skipped).
bool reason_printed = false;
typename StlContainer::const_iterator it = stl_container.begin();
for (size_t i = 0; i != count(); ++it, ++i) {
::std::stringstream ss;
matchers_[i].ExplainMatchResultTo(*it, &ss);
const string s = ss.str();
if (!s.empty()) {
if (reason_printed) {
*os << ",\n";
}
*os << "element " << i << " " << s;
reason_printed = true;
}
}
} else {
// We need to explain why the container doesn't match.
const size_t actual_count = stl_container.size();
if (actual_count != count()) {
// The element count doesn't match. If the container is
// empty, there's no need to explain anything as Google Mock
// already prints the empty container. Otherwise we just need
// to show how many elements there actually are.
if (actual_count != 0) {
*os << "has " << Elements(actual_count);
}
return;
}
// The container has the right size but at least one element
// doesn't match expectation. We need to find this element and
// explain why it doesn't match.
typename StlContainer::const_iterator it = stl_container.begin();
for (size_t i = 0; i != count(); ++it, ++i) {
if (matchers_[i].Matches(*it)) {
continue;
}
*os << "element " << i << " doesn't match";
::std::stringstream ss;
matchers_[i].ExplainMatchResultTo(*it, &ss);
const string s = ss.str();
if (!s.empty()) {
*os << " (" << s << ")";
}
return;
}
}
}
private:
static Message Elements(size_t count) {
return Message() << count << (count == 1 ? " element" : " elements");
}
size_t count() const { return matchers_.size(); }
std::vector<Matcher<const Element&> > matchers_;
};
// Implements ElementsAre() of 0 arguments.
class ElementsAreMatcher0 {
public:
ElementsAreMatcher0() {}
template <typename Container>
operator Matcher<Container>() const {
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type::value_type
Element;
const Matcher<const Element&>* const matchers = NULL;
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
}
};
// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
public:
ElementsAreArrayMatcher(const T* first, size_t count) :
first_(first), count_(count) {}
template <typename Container>
operator Matcher<Container>() const {
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type::value_type
Element;
return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
}
private:
const T* const first_;
const size_t count_;
};
// Constants denoting interpolations in a matcher description string.
const int kTupleInterpolation = -1; // "%(*)s"
const int kPercentInterpolation = -2; // "%%"
const int kInvalidInterpolation = -3; // "%" followed by invalid text
// Records the location and content of an interpolation.
struct Interpolation {
Interpolation(const char* start, const char* end, int param)
: start_pos(start), end_pos(end), param_index(param) {}
// Points to the start of the interpolation (the '%' character).
const char* start_pos;
// Points to the first character after the interpolation.
const char* end_pos;
// 0-based index of the interpolated matcher parameter;
// kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
int param_index;
};
typedef ::std::vector<Interpolation> Interpolations;
// Parses a matcher description string and returns a vector of
// interpolations that appear in the string; generates non-fatal
// failures iff 'description' is an invalid matcher description.
// 'param_names' is a NULL-terminated array of parameter names in the
// order they appear in the MATCHER_P*() parameter list.
Interpolations ValidateMatcherDescription(
const char* param_names[], const char* description);
// Returns the actual matcher description, given the matcher name,
// user-supplied description template string, interpolations in the
// string, and the printed values of the matcher parameters.
string FormatMatcherDescription(
const char* matcher_name, const char* description,
const Interpolations& interp, const Strings& param_values);
} // namespace internal
// Implements MatcherCast().
template <typename T, typename M>
inline Matcher<T> MatcherCast(M matcher) {
return internal::MatcherCastImpl<T, M>::Cast(matcher);
}
// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
// 1. The C++ standard permits using the name _ in a namespace that
// is not the global namespace or ::std.
// 2. The AnythingMatcher class has no data member or constructor,
// so it's OK to create global variables of this type.
// 3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {};
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> An() { return A<T>(); }
// Creates a polymorphic matcher that matches anything equal to x.
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
// wouldn't compile.
template <typename T>
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
// Constructs a Matcher<T> from a 'value' of type T. The constructed
// matcher matches any value that's equal to 'value'.
template <typename T>
Matcher<T>::Matcher(T value) { *this = Eq(value); }
// Creates a monomorphic matcher that matches anything with type Lhs
// and equal to rhs. A user may need to use this instead of Eq(...)
// in order to resolve an overloading ambiguity.
//
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
// or Matcher<T>(x), but more readable than the latter.
//
// We could define similar monomorphic matchers for other comparison
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
// it yet as those are used much less than Eq() in practice. A user
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
// for example.
template <typename Lhs, typename Rhs>
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
// Creates a polymorphic matcher that matches anything >= x.
template <typename Rhs>
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
return internal::GeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything > x.
template <typename Rhs>
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
return internal::GtMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything <= x.
template <typename Rhs>
inline internal::LeMatcher<Rhs> Le(Rhs x) {
return internal::LeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything < x.
template <typename Rhs>
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
return internal::LtMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything != x.
template <typename Rhs>
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
return internal::NeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
return MakePolymorphicMatcher(internal::NotNullMatcher());
}
// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T>
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
return internal::RefMatcher<T&>(x);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, false);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, true);
}
// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, false);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, true);
}
// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher>
inline internal::PointeeMatcher<InnerMatcher> Pointee(
const InnerMatcher& inner_matcher) {
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
}
// Creates a matcher that matches an object whose given field matches
// 'matcher'. For example,
// Field(&Foo::number, Ge(5))
// matches a Foo object x iff x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<
internal::FieldMatcher<Class, FieldType> > Field(
FieldType Class::*field, const FieldMatcher& matcher) {
return MakePolymorphicMatcher(
internal::FieldMatcher<Class, FieldType>(
field, MatcherCast<const FieldType&>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Field(&Foo::bar, m)
// to compile where bar is an int32 and m is a matcher for int64.
}
// Creates a matcher that matches an object whose given property
// matches 'matcher'. For example,
// Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x iff x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<
internal::PropertyMatcher<Class, PropertyType> > Property(
PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType>(
property,
MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Property(&Foo::bar, m)
// to compile where bar() returns an int32 and m is a matcher for int64.
}
// Creates a matcher that matches an object iff the result of applying
// a callable to x matches 'matcher'.
// For example,
// ResultOf(f, StartsWith("hi"))
// matches a Foo object x iff f(x) starts with "hi".
// callable parameter can be a function, function pointer, or a functor.
// Callable has to satisfy the following conditions:
// * It is required to keep no state affecting the results of
// the calls on it and make no assumptions about how many calls
// will be made. Any state it keeps must be protected from the
// concurrent access.
// * If it is a function object, it has to define type result_type.
// We recommend deriving your functor classes from std::unary_function.
template <typename Callable, typename ResultOfMatcher>
internal::ResultOfMatcher<Callable> ResultOf(
Callable callable, const ResultOfMatcher& matcher) {
return internal::ResultOfMatcher<Callable>(
callable,
MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
matcher));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// ResultOf(Function, m)
// to compile where Function() returns an int32 and m is a matcher for int64.
}
// String matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrEq(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, true, true));
}
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrNe(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, false, true));
}
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrCaseEq(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, true, false));
}
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrCaseNe(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, false, false));
}
// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
HasSubstr(const internal::string& substring) {
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
substring));
}
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
StartsWith(const internal::string& prefix) {
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
prefix));
}
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
EndsWith(const internal::string& suffix) {
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
suffix));
}
#ifdef GMOCK_HAS_REGEX
// Matches a string that fully matches regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
const internal::RE* regex) {
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
const internal::string& regex) {
return MatchesRegex(new internal::RE(regex));
}
// Matches a string that contains regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
const internal::RE* regex) {
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
const internal::string& regex) {
return ContainsRegex(new internal::RE(regex));
}
#endif // GMOCK_HAS_REGEX
#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Wide string matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrEq(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, true, true));
}
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrNe(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, false, true));
}
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrCaseEq(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, true, false));
}
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrCaseNe(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, false, false));
}
// Creates a matcher that matches any wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
HasSubstr(const internal::wstring& substring) {
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
substring));
}
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
StartsWith(const internal::wstring& prefix) {
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
prefix));
}
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
EndsWith(const internal::wstring& suffix) {
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
suffix));
}
#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher>
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
return internal::NotMatcher<InnerMatcher>(m);
}
// Creates a matcher that matches any value that matches all of the
// given matchers.
//
// For now we only support up to 5 matchers. Support for more
// matchers can be added as needed, or the user can use nested
// AllOf()s.
template <typename Matcher1, typename Matcher2>
inline internal::BothOfMatcher<Matcher1, Matcher2>
AllOf(Matcher1 m1, Matcher2 m2) {
return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
}
template <typename Matcher1, typename Matcher2, typename Matcher3>
inline internal::BothOfMatcher<Matcher1,
internal::BothOfMatcher<Matcher2, Matcher3> >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
return AllOf(m1, AllOf(m2, m3));
}
template <typename Matcher1, typename Matcher2, typename Matcher3,
typename Matcher4>
inline internal::BothOfMatcher<Matcher1,
internal::BothOfMatcher<Matcher2,
internal::BothOfMatcher<Matcher3, Matcher4> > >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
return AllOf(m1, AllOf(m2, m3, m4));
}
template <typename Matcher1, typename Matcher2, typename Matcher3,
typename Matcher4, typename Matcher5>
inline internal::BothOfMatcher<Matcher1,
internal::BothOfMatcher<Matcher2,
internal::BothOfMatcher<Matcher3,
internal::BothOfMatcher<Matcher4, Matcher5> > > >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
return AllOf(m1, AllOf(m2, m3, m4, m5));
}
// Creates a matcher that matches any value that matches at least one
// of the given matchers.
//
// For now we only support up to 5 matchers. Support for more
// matchers can be added as needed, or the user can use nested
// AnyOf()s.
template <typename Matcher1, typename Matcher2>
inline internal::EitherOfMatcher<Matcher1, Matcher2>
AnyOf(Matcher1 m1, Matcher2 m2) {
return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
}
template <typename Matcher1, typename Matcher2, typename Matcher3>
inline internal::EitherOfMatcher<Matcher1,
internal::EitherOfMatcher<Matcher2, Matcher3> >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
return AnyOf(m1, AnyOf(m2, m3));
}
template <typename Matcher1, typename Matcher2, typename Matcher3,
typename Matcher4>
inline internal::EitherOfMatcher<Matcher1,
internal::EitherOfMatcher<Matcher2,
internal::EitherOfMatcher<Matcher3, Matcher4> > >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
return AnyOf(m1, AnyOf(m2, m3, m4));
}
template <typename Matcher1, typename Matcher2, typename Matcher3,
typename Matcher4, typename Matcher5>
inline internal::EitherOfMatcher<Matcher1,
internal::EitherOfMatcher<Matcher2,
internal::EitherOfMatcher<Matcher3,
internal::EitherOfMatcher<Matcher4, Matcher5> > > >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
return AnyOf(m1, AnyOf(m2, m3, m4, m5));
}
// Returns a matcher that matches anything that satisfies the given
// predicate. The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate>
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
Truly(Predicate pred) {
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
}
2009-01-16 01:13:50 +00:00
// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container>
inline PolymorphicMatcher<internal::ContainerEqMatcher<
GMOCK_REMOVE_CONST_(Container)> >
2009-01-16 01:13:50 +00:00
ContainerEq(const Container& rhs) {
// This following line is for working around a bug in MSVC 8.0,
// which causes Container to be a const type sometimes.
typedef GMOCK_REMOVE_CONST_(Container) RawContainer;
return MakePolymorphicMatcher(internal::ContainerEqMatcher<RawContainer>(rhs));
}
// Matches an STL-style container or a native array that contains at
// least one element matching the given value or matcher.
//
// Examples:
// ::std::set<int> page_ids;
// page_ids.insert(3);
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Contains(1));
// EXPECT_THAT(page_ids, Contains(Gt(2)));
// EXPECT_THAT(page_ids, Not(Contains(4)));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
2009-07-01 05:03:39 +00:00
// EXPECT_THAT(page_lengths,
// Contains(::std::pair<const int, size_t>(1, 100)));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
template <typename M>
inline internal::ContainsMatcher<M> Contains(M matcher) {
return internal::ContainsMatcher<M>(matcher);
2009-01-16 01:13:50 +00:00
}
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename M>
inline internal::KeyMatcher<M> Key(M inner_matcher) {
return internal::KeyMatcher<M>(inner_matcher);
}
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
// matches first_matcher and whose 'second' field matches second_matcher. For
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
// to match a std::map<int, string> that contains exactly one element whose key
// is >= 5 and whose value equals "foo".
template <typename FirstMatcher, typename SecondMatcher>
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
return internal::PairMatcher<FirstMatcher, SecondMatcher>(
first_matcher, second_matcher);
}
// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M>
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
return internal::MatcherAsPredicate<M>(matcher);
}
// Returns true iff the value matches the matcher.
template <typename T, typename M>
inline bool Value(const T& value, M matcher) {
return testing::Matches(matcher)(value);
}
// AllArgs(m) is a synonym of m. This is useful in
//
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
//
// which is easier to read than
//
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
template <typename InnerMatcher>
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
// These macros allow using matchers to check values in Google Test
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed iff the value matches the matcher. If the assertion fails,
// the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_