Finishes SafeMatcherCast by catching lossy arithmetic conversions at compile-time; uses ACTION_TEMPLATE to simplify the definition of many actions; makes mock object uncopyable; teaches gmock doctor about wrong MOCK_METHODn.

This commit is contained in:
zhanyong.wan 2009-05-14 20:55:30 +00:00
parent c6a412397b
commit 16cf473930
9 changed files with 617 additions and 954 deletions

View File

@ -443,264 +443,6 @@ class CallableHelper {
}; // class CallableHelper
// Invokes a nullary callable argument.
template <size_t N>
class InvokeArgumentAction0 {
public:
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args));
}
};
// Invokes a unary callable argument with the given argument.
template <size_t N, typename A1>
class InvokeArgumentAction1 {
public:
// We deliberately pass a1 by value instead of const reference here
// in case it is a C-string literal.
//
// Since this function is defined inline, the compiler can get rid
// of the copying of the arguments. Therefore the performance won't
// be hurt.
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_);
}
private:
const A1 arg1_;
};
// Invokes a binary callable argument with the given arguments.
template <size_t N, typename A1, typename A2>
class InvokeArgumentAction2 {
public:
InvokeArgumentAction2(A1 a1, A2 a2) :
arg1_(a1), arg2_(a2) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_);
}
private:
const A1 arg1_;
const A2 arg2_;
};
// Invokes a ternary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3>
class InvokeArgumentAction3 {
public:
InvokeArgumentAction3(A1 a1, A2 a2, A3 a3) :
arg1_(a1), arg2_(a2), arg3_(a3) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_,
arg3_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
};
// Invokes a 4-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4>
class InvokeArgumentAction4 {
public:
InvokeArgumentAction4(A1 a1, A2 a2, A3 a3, A4 a4) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_,
arg3_, arg4_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
};
// Invokes a 5-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5>
class InvokeArgumentAction5 {
public:
InvokeArgumentAction5(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
};
// Invokes a 6-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
class InvokeArgumentAction6 {
public:
InvokeArgumentAction6(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
};
// Invokes a 7-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
class InvokeArgumentAction7 {
public:
InvokeArgumentAction7(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
arg7_(a7) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
};
// Invokes a 8-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
class InvokeArgumentAction8 {
public:
InvokeArgumentAction8(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
A8 a8) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
arg7_(a7), arg8_(a8) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
};
// Invokes a 9-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
class InvokeArgumentAction9 {
public:
InvokeArgumentAction9(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
A9 a9) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
arg7_(a7), arg8_(a8), arg9_(a9) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_,
arg9_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
const A9 arg9_;
};
// Invokes a 10-ary callable argument with the given arguments.
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
class InvokeArgumentAction10 {
public:
InvokeArgumentAction10(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
A8 a8, A9 a9, A10 a10) :
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
arg7_(a7), arg8_(a8), arg9_(a9), arg10_(a10) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_,
arg9_, arg10_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
const A9 arg9_;
const A10 arg10_;
};
// An INTERNAL macro for extracting the type of a tuple field. It's
// subject to change without notice - DO NOT USE IN USER CODE!
#define GMOCK_FIELD_(Tuple, N) \
@ -1140,140 +882,6 @@ inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
template <size_t N>
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() {
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>());
}
// We deliberately pass a1 by value instead of const reference here in
// case it is a C-string literal. If we had declared the parameter as
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler
// would've thought A1 is 'char[3]', which causes trouble as the
// implementation needs to copy a value of type A1. By declaring the
// parameter as 'A1 a1', the compiler will correctly infer that A1 is
// 'const char*' when it sees InvokeArgument<0>("Hi").
//
// Since this function is defined inline, the compiler can get rid of
// the copying of the arguments. Therefore the performance won't be
// hurt.
template <size_t N, typename A1>
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> >
InvokeArgument(A1 a1) {
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1));
}
template <size_t N, typename A1, typename A2>
inline PolymorphicAction<internal::InvokeArgumentAction2<N, A1, A2> >
InvokeArgument(A1 a1, A2 a2) {
return MakePolymorphicAction(
internal::InvokeArgumentAction2<N, A1, A2>(a1, a2));
}
template <size_t N, typename A1, typename A2, typename A3>
inline PolymorphicAction<internal::InvokeArgumentAction3<N, A1, A2, A3> >
InvokeArgument(A1 a1, A2 a2, A3 a3) {
return MakePolymorphicAction(
internal::InvokeArgumentAction3<N, A1, A2, A3>(a1, a2, a3));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4>
inline PolymorphicAction<internal::InvokeArgumentAction4<N, A1, A2, A3, A4> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4) {
return MakePolymorphicAction(
internal::InvokeArgumentAction4<N, A1, A2, A3, A4>(a1, a2, a3, a4));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5>
inline PolymorphicAction<internal::InvokeArgumentAction5<N, A1, A2, A3, A4,
A5> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
return MakePolymorphicAction(
internal::InvokeArgumentAction5<N, A1, A2, A3, A4, A5>(a1, a2, a3, a4,
a5));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
inline PolymorphicAction<internal::InvokeArgumentAction6<N, A1, A2, A3, A4, A5,
A6> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
return MakePolymorphicAction(
internal::InvokeArgumentAction6<N, A1, A2, A3, A4, A5, A6>(a1, a2, a3,
a4, a5, a6));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
inline PolymorphicAction<internal::InvokeArgumentAction7<N, A1, A2, A3, A4, A5,
A6, A7> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) {
return MakePolymorphicAction(
internal::InvokeArgumentAction7<N, A1, A2, A3, A4, A5, A6, A7>(a1, a2,
a3, a4, a5, a6, a7));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
inline PolymorphicAction<internal::InvokeArgumentAction8<N, A1, A2, A3, A4, A5,
A6, A7, A8> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) {
return MakePolymorphicAction(
internal::InvokeArgumentAction8<N, A1, A2, A3, A4, A5, A6, A7, A8>(a1,
a2, a3, a4, a5, a6, a7, a8));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
inline PolymorphicAction<internal::InvokeArgumentAction9<N, A1, A2, A3, A4, A5,
A6, A7, A8, A9> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) {
return MakePolymorphicAction(
internal::InvokeArgumentAction9<N, A1, A2, A3, A4, A5, A6, A7, A8,
A9>(a1, a2, a3, a4, a5, a6, a7, a8, a9));
}
template <size_t N, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
inline PolymorphicAction<internal::InvokeArgumentAction10<N, A1, A2, A3, A4,
A5, A6, A7, A8, A9, A10> >
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9,
A10 a10) {
return MakePolymorphicAction(
internal::InvokeArgumentAction10<N, A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
}
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
@ -2715,271 +2323,153 @@ DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
// updated.
namespace testing {
namespace internal {
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
// Saves argument #0 to where the pointer points.
ACTION_P(SaveArg0, pointer) { *pointer = arg0; }
// Assigns 'value' to the variable referenced by argument #0.
ACTION_P(SetArg0Referee, value) {
// Ensures that argument #0 is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GMOCK_COMPILE_ASSERT_(internal::is_reference<arg0_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
arg0 = value;
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args));
}
// ReturnNewAction<T> creates and returns a new instance of an object each time
// it is performed. It is overloaded to work with constructors that take
// different numbers of arguments.
// Returns a new instance of T using a nullary constructor with the given
// arguments.
template <typename T>
class ReturnNewAction0 {
public:
ReturnNewAction0() {}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(p0)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0);
}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T();
}
private:
};
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_2_VALUE_PARAMS(p0, p1)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1);
}
// Returns a new instance of T using a unary constructor with the given
// arguments.
template <typename T, typename A1>
class ReturnNewAction1 {
public:
explicit ReturnNewAction1(A1 a1) : arg1_(a1) {}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_3_VALUE_PARAMS(p0, p1, p2)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2);
}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_);
}
private:
const A1 arg1_;
};
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3);
}
// Returns a new instance of T using a binary constructor with the given
// arguments.
template <typename T, typename A1, typename A2>
class ReturnNewAction2 {
public:
ReturnNewAction2(A1 a1, A2 a2) : arg1_(a1), arg2_(a2) {}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4);
}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_);
}
private:
const A1 arg1_;
const A2 arg2_;
};
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5);
}
// Returns a new instance of T using a ternary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3>
class ReturnNewAction3 {
public:
ReturnNewAction3(A1 a1, A2 a2, A3 a3) : arg1_(a1), arg2_(a2), arg3_(a3) {}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6);
}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
};
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7);
}
// Returns a new instance of T using a 4-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4>
class ReturnNewAction4 {
public:
ReturnNewAction4(A1 a1, A2 a2, A3 a3, A4 a4) : arg1_(a1), arg2_(a2),
arg3_(a3), arg4_(a4) {}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8);
}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
};
// Returns a new instance of T using a 5-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5>
class ReturnNewAction5 {
public:
ReturnNewAction5(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) : arg1_(a1), arg2_(a2),
arg3_(a3), arg4_(a4), arg5_(a5) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
};
// Returns a new instance of T using a 6-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
class ReturnNewAction6 {
public:
ReturnNewAction6(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) : arg1_(a1),
arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
};
// Returns a new instance of T using a 7-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
class ReturnNewAction7 {
public:
ReturnNewAction7(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
A7 a7) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
arg6_(a6), arg7_(a7) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
};
// Returns a new instance of T using a 8-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
class ReturnNewAction8 {
public:
ReturnNewAction8(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
A8 a8) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
arg6_(a6), arg7_(a7), arg8_(a8) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
};
// Returns a new instance of T using a 9-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
class ReturnNewAction9 {
public:
ReturnNewAction9(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
A9 a9) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
arg6_(a6), arg7_(a7), arg8_(a8), arg9_(a9) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_, arg9_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
const A9 arg9_;
};
// Returns a new instance of T using a 10-ary constructor with the given
// arguments.
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
class ReturnNewAction10 {
public:
ReturnNewAction10(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
A9 a9, A10 a10) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
arg6_(a6), arg7_(a7), arg8_(a8), arg9_(a9), arg10_(a10) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_, arg9_,
arg10_);
}
private:
const A1 arg1_;
const A2 arg2_;
const A3 arg3_;
const A4 arg4_;
const A5 arg5_;
const A6 arg6_;
const A7 arg7_;
const A8 arg8_;
const A9 arg9_;
const A10 arg10_;
};
// Deletes the object pointed to by argument #0.
ACTION(DeleteArg0) { delete arg0; }
} // namespace internal
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
}
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <int k, typename Pointer>
inline internal::WithArgsAction<internal::SaveArg0ActionP<Pointer>, k>
SaveArg(const Pointer& pointer) {
return WithArg<k>(internal::SaveArg0(pointer));
ACTION_TEMPLATE(SaveArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(pointer)) {
*pointer = ::std::tr1::get<k>(args);
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <int k, typename Value>
inline internal::WithArgsAction<internal::SetArg0RefereeActionP<Value>, k>
SetArgReferee(const Value& value) {
return WithArg<k>(internal::SetArg0Referee(value));
ACTION_TEMPLATE(SetArgReferee,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(value)) {
typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
// Ensures that argument #k is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
::std::tr1::get<k>(args) = value;
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
ACTION_TEMPLATE(SetArrayArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_2_VALUE_PARAMS(first, last)) {
// Microsoft compiler deprecates ::std::copy, so we want to suppress warning
// 4996 (Function call with parameters that may be unsafe) there.
#ifdef _MSC_VER
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable:4996) // Temporarily disables warning 4996.
#endif
::std::copy(first, last, ::std::tr1::get<k>(args));
#ifdef _MSC_VER
#pragma warning(pop) // Restores the warning state.
#endif
}
// Various overloads for ReturnNew<T>().
@ -2987,106 +2477,78 @@ SetArgReferee(const Value& value) {
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
template <typename T>
inline PolymorphicAction<internal::ReturnNewAction0<T> >
ReturnNew() {
return MakePolymorphicAction(
internal::ReturnNewAction0<T>());
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_0_VALUE_PARAMS()) {
return new T();
}
template <typename T, typename A1>
inline PolymorphicAction<internal::ReturnNewAction1<T, A1> >
ReturnNew(A1 a1) {
return MakePolymorphicAction(
internal::ReturnNewAction1<T, A1>(a1));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_1_VALUE_PARAMS(p0)) {
return new T(p0);
}
template <typename T, typename A1, typename A2>
inline PolymorphicAction<internal::ReturnNewAction2<T, A1, A2> >
ReturnNew(A1 a1, A2 a2) {
return MakePolymorphicAction(
internal::ReturnNewAction2<T, A1, A2>(a1, a2));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_2_VALUE_PARAMS(p0, p1)) {
return new T(p0, p1);
}
template <typename T, typename A1, typename A2, typename A3>
inline PolymorphicAction<internal::ReturnNewAction3<T, A1, A2, A3> >
ReturnNew(A1 a1, A2 a2, A3 a3) {
return MakePolymorphicAction(
internal::ReturnNewAction3<T, A1, A2, A3>(a1, a2, a3));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_3_VALUE_PARAMS(p0, p1, p2)) {
return new T(p0, p1, p2);
}
template <typename T, typename A1, typename A2, typename A3, typename A4>
inline PolymorphicAction<internal::ReturnNewAction4<T, A1, A2, A3, A4> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4) {
return MakePolymorphicAction(
internal::ReturnNewAction4<T, A1, A2, A3, A4>(a1, a2, a3, a4));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
return new T(p0, p1, p2, p3);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5>
inline PolymorphicAction<internal::ReturnNewAction5<T, A1, A2, A3, A4, A5> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
return MakePolymorphicAction(
internal::ReturnNewAction5<T, A1, A2, A3, A4, A5>(a1, a2, a3, a4, a5));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
return new T(p0, p1, p2, p3, p4);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
inline PolymorphicAction<internal::ReturnNewAction6<T, A1, A2, A3, A4, A5, A6> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
return MakePolymorphicAction(
internal::ReturnNewAction6<T, A1, A2, A3, A4, A5, A6>(a1, a2, a3, a4, a5,
a6));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
return new T(p0, p1, p2, p3, p4, p5);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
inline PolymorphicAction<internal::ReturnNewAction7<T, A1, A2, A3, A4, A5, A6,
A7> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) {
return MakePolymorphicAction(
internal::ReturnNewAction7<T, A1, A2, A3, A4, A5, A6, A7>(a1, a2, a3, a4,
a5, a6, a7));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
return new T(p0, p1, p2, p3, p4, p5, p6);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
inline PolymorphicAction<internal::ReturnNewAction8<T, A1, A2, A3, A4, A5, A6,
A7, A8> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) {
return MakePolymorphicAction(
internal::ReturnNewAction8<T, A1, A2, A3, A4, A5, A6, A7, A8>(a1, a2, a3,
a4, a5, a6, a7, a8));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
inline PolymorphicAction<internal::ReturnNewAction9<T, A1, A2, A3, A4, A5, A6,
A7, A8, A9> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) {
return MakePolymorphicAction(
internal::ReturnNewAction9<T, A1, A2, A3, A4, A5, A6, A7, A8, A9>(a1, a2,
a3, a4, a5, a6, a7, a8, a9));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8);
}
template <typename T, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
inline PolymorphicAction<internal::ReturnNewAction10<T, A1, A2, A3, A4, A5, A6,
A7, A8, A9, A10> >
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9,
A10 a10) {
return MakePolymorphicAction(
internal::ReturnNewAction10<T, A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
}
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <int k>
inline internal::WithArgsAction<internal::DeleteArg0Action, k>
DeleteArg() {
return WithArg<k>(internal::DeleteArg0());
ACTION_TEMPLATE(DeleteArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
delete ::std::tr1::get<k>(args);
}
// Action Throw(exception) can be used in a mock function of any type

View File

@ -198,77 +198,6 @@ $var Ts = [[$for j, [[T$j]]]]
}; // class CallableHelper
// Invokes a nullary callable argument.
template <size_t N>
class InvokeArgumentAction0 {
public:
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args));
}
};
// Invokes a unary callable argument with the given argument.
template <size_t N, typename A1>
class InvokeArgumentAction1 {
public:
// We deliberately pass a1 by value instead of const reference here
// in case it is a C-string literal.
//
// Since this function is defined inline, the compiler can get rid
// of the copying of the arguments. Therefore the performance won't
// be hurt.
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_);
}
private:
const A1 arg1_;
};
$range i 2..n
$for i [[
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
$range j 1..i
$var typename_As = [[$for j, [[typename A$j]]]]
$var args_ = [[$for j, [[arg$j[[]]_]]]]
// Invokes a $arity callable argument with the given arguments.
template <size_t N, $typename_As>
class InvokeArgumentAction$i {
public:
InvokeArgumentAction$i($for j, [[A$j a$j]]) :
$for j, [[arg$j[[]]_(a$j)]] {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
$if i <= 4 [[
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), $args_);
]] $else [[
// We extract the callable to a variable before invoking it, in
// case it is a functor passed by value and its operator() is not
// const.
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
::std::tr1::get<N>(args);
return function($args_);
]]
}
private:
$for j [[
const A$j arg$j[[]]_;
]]
};
]]
// An INTERNAL macro for extracting the type of a tuple field. It's
// subject to change without notice - DO NOT USE IN USER CODE!
#define GMOCK_FIELD_(Tuple, N) \
@ -478,74 +407,6 @@ inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
template <size_t N>
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() {
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>());
}
// We deliberately pass a1 by value instead of const reference here in
// case it is a C-string literal. If we had declared the parameter as
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler
// would've thought A1 is 'char[3]', which causes trouble as the
// implementation needs to copy a value of type A1. By declaring the
// parameter as 'A1 a1', the compiler will correctly infer that A1 is
// 'const char*' when it sees InvokeArgument<0>("Hi").
//
// Since this function is defined inline, the compiler can get rid of
// the copying of the arguments. Therefore the performance won't be
// hurt.
template <size_t N, typename A1>
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> >
InvokeArgument(A1 a1) {
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1));
}
$range i 2..n
$for i [[
$range j 1..i
$var typename_As = [[$for j, [[typename A$j]]]]
$var As = [[$for j, [[A$j]]]]
$var Aas = [[$for j, [[A$j a$j]]]]
$var as = [[$for j, [[a$j]]]]
template <size_t N, $typename_As>
inline PolymorphicAction<internal::InvokeArgumentAction$i<N, $As> >
InvokeArgument($Aas) {
return MakePolymorphicAction(
internal::InvokeArgumentAction$i<N, $As>($as));
}
]]
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
@ -1025,76 +886,89 @@ $$ // show up in the generated code.
// updated.
namespace testing {
namespace internal {
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
// Saves argument #0 to where the pointer points.
ACTION_P(SaveArg0, pointer) { *pointer = arg0; }
// Assigns 'value' to the variable referenced by argument #0.
ACTION_P(SetArg0Referee, value) {
// Ensures that argument #0 is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GMOCK_COMPILE_ASSERT_(internal::is_reference<arg0_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
arg0 = value;
}
// ReturnNewAction<T> creates and returns a new instance of an object each time
// it is performed. It is overloaded to work with constructors that take
// different numbers of arguments.
$range i 0..n
$for i [[
$var arity = [[ $if i==0 [[nullary]]
$elif i==1 [[unary]]
$elif i==2 [[binary]]
$elif i==3 [[ternary]]
$else [[$i-ary]]]]
$range j 1..i
$var typename_As = [[$for j [[, typename A$j]]]]
$var args_ = [[$for j, [[arg$j[[]]_]]]]
$range j 0..i-1
// Returns a new instance of T using a $arity constructor with the given
// arguments.
template <typename T$typename_As>
class ReturnNewAction$i {
public:
$if i==1 [[explicit ]]ReturnNewAction$i($for j, [[A$j a$j]])$if i>0 [[ : ]]
$for j, [[arg$j[[]]_(a$j)]] {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) {
return new T($args_);
}
private:
$for j [[
const A$j arg$j[[]]_;
]]
};
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args)$for j [[, p$j]]);
}
]]
// Deletes the object pointed to by argument #0.
ACTION(DeleteArg0) { delete arg0; }
} // namespace internal
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <int k, typename Pointer>
inline internal::WithArgsAction<internal::SaveArg0ActionP<Pointer>, k>
SaveArg(const Pointer& pointer) {
return WithArg<k>(internal::SaveArg0(pointer));
ACTION_TEMPLATE(SaveArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(pointer)) {
*pointer = ::std::tr1::get<k>(args);
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <int k, typename Value>
inline internal::WithArgsAction<internal::SetArg0RefereeActionP<Value>, k>
SetArgReferee(const Value& value) {
return WithArg<k>(internal::SetArg0Referee(value));
ACTION_TEMPLATE(SetArgReferee,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(value)) {
typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
// Ensures that argument #k is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
::std::tr1::get<k>(args) = value;
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
ACTION_TEMPLATE(SetArrayArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_2_VALUE_PARAMS(first, last)) {
// Microsoft compiler deprecates ::std::copy, so we want to suppress warning
// 4996 (Function call with parameters that may be unsafe) there.
#ifdef _MSC_VER
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable:4996) // Temporarily disables warning 4996.
#endif
::std::copy(first, last, ::std::tr1::get<k>(args));
#ifdef _MSC_VER
#pragma warning(pop) // Restores the warning state.
#endif
}
// Various overloads for ReturnNew<T>().
@ -1104,27 +978,23 @@ SetArgReferee(const Value& value) {
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
$range i 0..n
$for i [[
$range j 1..i
$var typename_As = [[$for j [[, typename A$j]]]]
$var As = [[$for j [[, A$j]]]]
$var Aas = [[$for j, [[A$j a$j]]]]
$var as = [[$for j, [[a$j]]]]
$range j 0..i-1
$var ps = [[$for j, [[p$j]]]]
template <typename T$typename_As>
inline PolymorphicAction<internal::ReturnNewAction$i<T$As> >
ReturnNew($Aas) {
return MakePolymorphicAction(
internal::ReturnNewAction$i<T$As>($as));
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_$i[[]]_VALUE_PARAMS($ps)) {
return new T($ps);
}
]]
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <int k>
inline internal::WithArgsAction<internal::DeleteArg0Action, k>
DeleteArg() {
return WithArg<k>(internal::DeleteArg0());
ACTION_TEMPLATE(DeleteArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
delete ::std::tr1::get<k>(args);
}
// Action Throw(exception) can be used in a mock function of any type

View File

@ -39,6 +39,7 @@
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#include <algorithm>
#include <limits>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
@ -340,6 +341,16 @@ Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
GMOCK_COMPILE_ASSERT_(
internal::is_reference<T>::value || !internal::is_reference<U>::value,
cannot_convert_non_referentce_arg_to_reference);
// In case both T and U are arithmetic types, enforce that the
// conversion is not lossy.
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
GMOCK_COMPILE_ASSERT_(
kTIsOther || kUIsOther ||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
conversion_of_arithmetic_types_must_be_lossless);
return MatcherCast<T>(matcher);
}
@ -1164,8 +1175,8 @@ class EitherOfMatcher {
// both Matcher1 and Matcher2 can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new EitherOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
SafeMatcherCast<T>(matcher2_)));
return Matcher<T>(new EitherOfMatcherImpl<T>(
SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
}
private:
Matcher1 matcher1_;
@ -1184,7 +1195,7 @@ class TrulyMatcher {
// argument is passed by reference as the predicate may be
// interested in the address of the argument.
template <typename T>
bool Matches(T& x) const {
bool Matches(T& x) const { // NOLINT
#if GTEST_OS_WINDOWS
// MSVC warns about converting a value into bool (warning 4800).
#pragma warning(push) // Saves the current warning state.

View File

@ -341,12 +341,11 @@ inline void PrintTo(char* s, ::std::ostream* os) {
PrintTo(implicit_cast<const char*>(s), os);
}
// MSVC compiler can be configured to define whar_t as a typedef
// of unsigned short. Defining an overload for const wchar_t* in that case
// would cause pointers to unsigned shorts be printed as wide strings,
// possibly accessing more memory than intended and causing invalid
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
// wchar_t is implemented as a native type.
// MSVC can be configured to define wchar_t as a typedef of unsigned
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
// type. When wchar_t is a typedef, defining an overload for const
// wchar_t* would cause unsigned short* be printed as a wide string,
// possibly causing invalid memory accesses.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// Overloads for wide C strings
void PrintTo(const wchar_t* s, ::std::ostream* os);

View File

@ -1359,6 +1359,20 @@ class FunctionMockerBase : public UntypedFunctionMockerBase {
std::vector<DefaultActionSpec<F> > default_actions_;
// All expectations for this function mocker.
Expectations expectations_;
// There is no generally useful and implementable semantics of
// copying a mock object, so copying a mock is usually a user error.
// Thus we disallow copying function mockers. If the user really
// wants to copy a mock object, he should implement his own copy
// operation, for example:
//
// class MockFoo : public Foo {
// public:
// // Defines a copy constructor explicitly.
// MockFoo(const MockFoo& src) {}
// ...
// };
GTEST_DISALLOW_COPY_AND_ASSIGN_(FunctionMockerBase);
}; // class FunctionMockerBase
#ifdef _MSC_VER

View File

@ -157,7 +157,7 @@ inline Element* GetRawPointer(Element* p) { return p; }
// This comparator allows linked_ptr to be stored in sets.
template <typename T>
struct LinkedPtrLessThan {
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
const ::testing::internal::linked_ptr<T>& rhs) const {
return lhs.get() < rhs.get();
}
@ -210,17 +210,154 @@ class ImplicitlyConvertible {
template <typename From, typename To>
const bool ImplicitlyConvertible<From, To>::value;
// In what follows, we use the term "kind" to indicate whether a type
// is bool, an integer type (excluding bool), a floating-point type,
// or none of them. This categorization is useful for determining
// when a matcher argument type can be safely converted to another
// type in the implementation of SafeMatcherCast.
enum TypeKind {
kBool, kInteger, kFloatingPoint, kOther
};
// KindOf<T>::value is the kind of type T.
template <typename T> struct KindOf {
enum { value = kOther }; // The default kind.
};
// This macro declares that the kind of 'type' is 'kind'.
#define GMOCK_DECLARE_KIND_(type, kind) \
template <> struct KindOf<type> { enum { value = kind }; }
GMOCK_DECLARE_KIND_(bool, kBool);
// All standard integer types.
GMOCK_DECLARE_KIND_(char, kInteger);
GMOCK_DECLARE_KIND_(signed char, kInteger);
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(int, kInteger);
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
// MSVC can be configured to define wchar_t as a typedef of unsigned
// short. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t is a
// native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
#endif
// Non-standard integer types.
GMOCK_DECLARE_KIND_(Int64, kInteger);
GMOCK_DECLARE_KIND_(UInt64, kInteger);
// All standard floating-point types.
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
#undef GMOCK_DECLARE_KIND_
// Evaluates to the kind of 'type'.
#define GMOCK_KIND_OF_(type) \
static_cast< ::testing::internal::TypeKind>( \
::testing::internal::KindOf<type>::value)
// Evaluates to true iff integer type T is signed.
#define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
// is true iff arithmetic type From can be losslessly converted to
// arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types, kFromKind is the kind of
// From, and kToKind is the kind of To; the value is
// implementation-defined when the above pre-condition is violated.
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
struct LosslessArithmeticConvertibleImpl : public false_type {};
// Converting bool to bool is lossless.
template <>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
: public true_type {}; // NOLINT
// Converting bool to any integer type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
: public true_type {}; // NOLINT
// Converting bool to any floating-point type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
: public true_type {}; // NOLINT
// Converting an integer to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting an integer to another non-bool integer is lossless iff
// the target type's range encloses the source type's range.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
: public bool_constant<
// When converting from a smaller size to a larger size, we are
// fine as long as we are not converting from signed to unsigned.
((sizeof(From) < sizeof(To)) &&
(!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
// When converting between the same size, the signedness must match.
((sizeof(From) == sizeof(To)) &&
(GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT
#undef GMOCK_IS_SIGNED_
// Converting an integer to a floating-point type may be lossy, since
// the format of a floating-point number is implementation-defined.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
: public false_type {}; // NOLINT
// Converting a floating-point to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting a floating-point to an integer is lossy.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
: public false_type {}; // NOLINT
// Converting a floating-point to another floating-point is lossless
// iff the target type is at least as big as the source type.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<
kFloatingPoint, From, kFloatingPoint, To>
: public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT
// LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
// type From can be losslessly converted to arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types; the value is
// implementation-defined when the above pre-condition is violated.
template <typename From, typename To>
struct LosslessArithmeticConvertible
: public LosslessArithmeticConvertibleImpl<
GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
// of those.
template <typename T>
struct IsAProtocolMessage {
static const bool value =
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value;
struct IsAProtocolMessage
: public bool_constant<
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
};
template <typename T>
const bool IsAProtocolMessage<T>::value;
// When the compiler sees expression IsContainerTest<C>(0), the first
// overload of IsContainerTest will be picked if C is an STL-style
@ -314,6 +451,8 @@ void Log(LogSeverity severity, const string& message, int stack_frames_to_skip);
// to declare an unused << operator in the global namespace.
struct Unused {};
// TODO(wan@google.com): group all type utilities together.
// Type traits.
// is_reference<T>::value is non-zero iff T is a reference type.
@ -325,8 +464,8 @@ template <typename T1, typename T2> struct type_equals : public false_type {};
template <typename T> struct type_equals<T, T> : public true_type {};
// remove_reference<T>::type removes the reference from type T, if any.
template <typename T> struct remove_reference { typedef T type; };
template <typename T> struct remove_reference<T&> { typedef T type; };
template <typename T> struct remove_reference { typedef T type; }; // NOLINT
template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
// Invalid<T>() returns an invalid value of type T. This is useful
// when a value of type T is needed for compilation, but the statement

View File

@ -36,7 +36,7 @@ __author__ = 'wan@google.com (Zhanyong Wan)'
import re
import sys
_VERSION = '0.1.0.80421'
_VERSION = '1.0.0'
_COMMON_GMOCK_SYMBOLS = [
# Matchers
@ -148,11 +148,14 @@ Please use ReturnRef() instead."""
def _NeedToReturnSomethingDiagnoser(msg):
"""Diagnoses the NRS disease, given the error messages by gcc."""
regex = (r'(?P<file>.*):(?P<line>\d+):\s+instantiated from here\n'
r'.*gmock-actions\.h.*error: void value not ignored')
regex = (r'(?P<file>.*):(?P<line>\d+):\s+'
r'(instantiated from here\n.'
r'*gmock-actions\.h.*error: void value not ignored)'
r'|(error: control reaches end of non-void function)')
diagnosis = """%(file)s:%(line)s:
You are using an action that returns void, but it needs to return
*something*. Please tell it *what* to return."""
*something*. Please tell it *what* to return. Perhaps you can use
the pattern DoAll(some_action, Return(some_value))?"""
return _GenericDiagnoser('NRS', 'Need to Return Something',
regex, diagnosis, msg)
@ -324,6 +327,23 @@ Note: the line number may be off; please fix all instances of Return(NULL)."""
regex, diagnosis, msg)
def _WrongMockMethodMacroDiagnoser(msg):
"""Diagnoses the WMM disease, given the error messages by gcc."""
regex = (r'(?P<file>.*):(?P<line>\d+):\s+'
r'.*this_method_does_not_take_(?P<wrong_args>\d+)_argument.*\n'
r'.*\n'
r'.*candidates are.*FunctionMocker<[^>]+A(?P<args>\d+)\)>'
)
diagnosis = """%(file)s:%(line)s:
You are using MOCK_METHOD%(wrong_args)s to define a mock method that has
%(args)s arguments. Use MOCK_METHOD%(args)s (or MOCK_CONST_METHOD%(args)s,
MOCK_METHOD%(args)s_T, MOCK_CONST_METHOD%(args)s_T as appropriate) instead."""
return _GenericDiagnoser('WMM', 'Wrong MOCK_METHODn macro',
regex, diagnosis, msg)
_DIAGNOSERS = [
_IncompleteByReferenceArgumentDiagnoser,
@ -337,6 +357,7 @@ _DIAGNOSERS = [
_OverloadedFunctionMatcherDiagnoser,
_OverloadedMethodActionDiagnoser1,
_OverloadedMethodActionDiagnoser2,
_WrongMockMethodMacroDiagnoser,
]

View File

@ -34,6 +34,7 @@
// This file tests the internal utilities.
#include <gmock/internal/gmock-internal-utils.h>
#include <stdlib.h>
#include <map>
#include <string>
#include <sstream>
@ -43,6 +44,10 @@
#include <gtest/gtest.h>
#include <gtest/gtest-spi.h>
#if GTEST_OS_CYGWIN
#include <sys/types.h> // For ssize_t. NOLINT
#endif
namespace testing {
namespace internal {
@ -232,6 +237,141 @@ TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
EXPECT_FALSE((ImplicitlyConvertible<Base&, Derived&>::value));
}
// Tests KindOf<T>.
TEST(KindOfTest, Bool) {
EXPECT_EQ(kBool, GMOCK_KIND_OF_(bool)); // NOLINT
}
TEST(KindOfTest, Integer) {
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(signed char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(short)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned short)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(int)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned int)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(long)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned long)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(wchar_t)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(Int64)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(UInt64)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(size_t)); // NOLINT
#if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_CYGWIN
// ssize_t is not defined on Windows and possibly some other OSes.
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(ssize_t)); // NOLINT
#endif
}
TEST(KindOfTest, FloatingPoint) {
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(float)); // NOLINT
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(double)); // NOLINT
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(long double)); // NOLINT
}
TEST(KindOfTest, Other) {
EXPECT_EQ(kOther, GMOCK_KIND_OF_(void*)); // NOLINT
EXPECT_EQ(kOther, GMOCK_KIND_OF_(char**)); // NOLINT
EXPECT_EQ(kOther, GMOCK_KIND_OF_(Base)); // NOLINT
}
// Tests LosslessArithmeticConvertible<T, U>.
TEST(LosslessArithmeticConvertibleTest, BoolToBool) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, BoolToInteger) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, char>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<bool, int>::value));
EXPECT_TRUE(
(LosslessArithmeticConvertible<bool, unsigned long>::value)); // NOLINT
}
TEST(LosslessArithmeticConvertibleTest, BoolToFloatingPoint) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, float>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<bool, double>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToBool) {
EXPECT_FALSE((LosslessArithmeticConvertible<unsigned char, bool>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToInteger) {
// Unsigned => larger signed is fine.
EXPECT_TRUE((LosslessArithmeticConvertible<unsigned char, int>::value));
// Unsigned => larger unsigned is fine.
EXPECT_TRUE(
(LosslessArithmeticConvertible<unsigned short, UInt64>::value)); // NOLINT
// Signed => unsigned is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<short, UInt64>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<
signed char, unsigned int>::value)); // NOLINT
// Same size and same signedness: fine too.
EXPECT_TRUE((LosslessArithmeticConvertible<
unsigned char, unsigned char>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<int, int>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<wchar_t, wchar_t>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<
unsigned long, unsigned long>::value)); // NOLINT
// Same size, different signedness: not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<
unsigned char, signed char>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, unsigned int>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<UInt64, Int64>::value));
// Larger size => smaller size is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<long, char>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<int, signed char>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<Int64, unsigned int>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToFloatingPoint) {
// Integers cannot be losslessly converted to floating-points, as
// the format of the latter is implementation-defined.
EXPECT_FALSE((LosslessArithmeticConvertible<char, float>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, double>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<
short, long double>::value)); // NOLINT
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToBool) {
EXPECT_FALSE((LosslessArithmeticConvertible<float, bool>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<double, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToInteger) {
EXPECT_FALSE((LosslessArithmeticConvertible<float, long>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<double, Int64>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<long double, int>::value));
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToFloatingPoint) {
// Smaller size => larger size is fine.
EXPECT_TRUE((LosslessArithmeticConvertible<float, double>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<float, long double>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<double, long double>::value));
// Same size: fine.
EXPECT_TRUE((LosslessArithmeticConvertible<float, float>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<double, double>::value));
// Larger size => smaller size is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<double, float>::value));
if (sizeof(double) == sizeof(long double)) { // NOLINT
// In some implementations (e.g. MSVC), double and long double
// have the same size.
EXPECT_TRUE((LosslessArithmeticConvertible<long double, double>::value));
} else {
EXPECT_FALSE((LosslessArithmeticConvertible<long double, double>::value));
}
}
// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
GMOCK_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, const_true);
@ -265,8 +405,10 @@ TEST(IsContainerTestTest, WorksForNonContainer) {
}
TEST(IsContainerTestTest, WorksForContainer) {
EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool> >(0)));
EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::map<int, double> >(0)));
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<std::vector<bool> >(0)));
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<std::map<int, double> >(0)));
}
// Tests the TupleMatches() template function.

View File

@ -376,13 +376,18 @@ TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
EXPECT_FALSE(m2.Matches('\n'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T
// can be implicitly converted to U.
TEST(SafeMatcherCastTest, FromImplicitlyConvertibleType) {
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
Matcher<double> m1 = DoubleEq(1.0);
Matcher<int> m2 = SafeMatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(1));
EXPECT_FALSE(m2.Matches(2));
Matcher<float> m2 = SafeMatcherCast<float>(m1);
EXPECT_TRUE(m2.Matches(1.0f));
EXPECT_FALSE(m2.Matches(2.0f));
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
EXPECT_TRUE(m3.Matches('a'));
EXPECT_FALSE(m3.Matches('b'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U