mirror of
https://github.com/google/googletest.git
synced 2024-12-27 10:11:03 +08:00
Finishes SafeMatcherCast by catching lossy arithmetic conversions at compile-time; uses ACTION_TEMPLATE to simplify the definition of many actions; makes mock object uncopyable; teaches gmock doctor about wrong MOCK_METHODn.
This commit is contained in:
parent
c6a412397b
commit
16cf473930
@ -443,264 +443,6 @@ class CallableHelper {
|
||||
|
||||
}; // class CallableHelper
|
||||
|
||||
// Invokes a nullary callable argument.
|
||||
template <size_t N>
|
||||
class InvokeArgumentAction0 {
|
||||
public:
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
static Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args));
|
||||
}
|
||||
};
|
||||
|
||||
// Invokes a unary callable argument with the given argument.
|
||||
template <size_t N, typename A1>
|
||||
class InvokeArgumentAction1 {
|
||||
public:
|
||||
// We deliberately pass a1 by value instead of const reference here
|
||||
// in case it is a C-string literal.
|
||||
//
|
||||
// Since this function is defined inline, the compiler can get rid
|
||||
// of the copying of the arguments. Therefore the performance won't
|
||||
// be hurt.
|
||||
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
};
|
||||
|
||||
// Invokes a binary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2>
|
||||
class InvokeArgumentAction2 {
|
||||
public:
|
||||
InvokeArgumentAction2(A1 a1, A2 a2) :
|
||||
arg1_(a1), arg2_(a2) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
};
|
||||
|
||||
// Invokes a ternary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3>
|
||||
class InvokeArgumentAction3 {
|
||||
public:
|
||||
InvokeArgumentAction3(A1 a1, A2 a2, A3 a3) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_,
|
||||
arg3_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
};
|
||||
|
||||
// Invokes a 4-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4>
|
||||
class InvokeArgumentAction4 {
|
||||
public:
|
||||
InvokeArgumentAction4(A1 a1, A2 a2, A3 a3, A4 a4) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_, arg2_,
|
||||
arg3_, arg4_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
};
|
||||
|
||||
// Invokes a 5-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5>
|
||||
class InvokeArgumentAction5 {
|
||||
public:
|
||||
InvokeArgumentAction5(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
};
|
||||
|
||||
// Invokes a 6-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6>
|
||||
class InvokeArgumentAction6 {
|
||||
public:
|
||||
InvokeArgumentAction6(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
};
|
||||
|
||||
// Invokes a 7-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7>
|
||||
class InvokeArgumentAction7 {
|
||||
public:
|
||||
InvokeArgumentAction7(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
|
||||
arg7_(a7) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
};
|
||||
|
||||
// Invokes a 8-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8>
|
||||
class InvokeArgumentAction8 {
|
||||
public:
|
||||
InvokeArgumentAction8(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
|
||||
A8 a8) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
|
||||
arg7_(a7), arg8_(a8) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
};
|
||||
|
||||
// Invokes a 9-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9>
|
||||
class InvokeArgumentAction9 {
|
||||
public:
|
||||
InvokeArgumentAction9(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
|
||||
A9 a9) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
|
||||
arg7_(a7), arg8_(a8), arg9_(a9) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_,
|
||||
arg9_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
const A9 arg9_;
|
||||
};
|
||||
|
||||
// Invokes a 10-ary callable argument with the given arguments.
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9,
|
||||
typename A10>
|
||||
class InvokeArgumentAction10 {
|
||||
public:
|
||||
InvokeArgumentAction10(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
|
||||
A8 a8, A9 a9, A10 a10) :
|
||||
arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6),
|
||||
arg7_(a7), arg8_(a8), arg9_(a9), arg10_(a10) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_,
|
||||
arg9_, arg10_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
const A9 arg9_;
|
||||
const A10 arg10_;
|
||||
};
|
||||
|
||||
// An INTERNAL macro for extracting the type of a tuple field. It's
|
||||
// subject to change without notice - DO NOT USE IN USER CODE!
|
||||
#define GMOCK_FIELD_(Tuple, N) \
|
||||
@ -1140,140 +882,6 @@ inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
|
||||
return internal::ReferenceWrapper<T>(l_value);
|
||||
}
|
||||
|
||||
// Various overloads for InvokeArgument<N>().
|
||||
//
|
||||
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
||||
// (0-based) argument, which must be a k-ary callable, of the mock
|
||||
// function, with arguments a1, a2, ..., a_k.
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// 1. The arguments are passed by value by default. If you need to
|
||||
// pass an argument by reference, wrap it inside ByRef(). For
|
||||
// example,
|
||||
//
|
||||
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
|
||||
//
|
||||
// passes 5 and string("Hello") by value, and passes foo by
|
||||
// reference.
|
||||
//
|
||||
// 2. If the callable takes an argument by reference but ByRef() is
|
||||
// not used, it will receive the reference to a copy of the value,
|
||||
// instead of the original value. For example, when the 0-th
|
||||
// argument of the mock function takes a const string&, the action
|
||||
//
|
||||
// InvokeArgument<0>(string("Hello"))
|
||||
//
|
||||
// makes a copy of the temporary string("Hello") object and passes a
|
||||
// reference of the copy, instead of the original temporary object,
|
||||
// to the callable. This makes it easy for a user to define an
|
||||
// InvokeArgument action from temporary values and have it performed
|
||||
// later.
|
||||
template <size_t N>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() {
|
||||
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>());
|
||||
}
|
||||
|
||||
// We deliberately pass a1 by value instead of const reference here in
|
||||
// case it is a C-string literal. If we had declared the parameter as
|
||||
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler
|
||||
// would've thought A1 is 'char[3]', which causes trouble as the
|
||||
// implementation needs to copy a value of type A1. By declaring the
|
||||
// parameter as 'A1 a1', the compiler will correctly infer that A1 is
|
||||
// 'const char*' when it sees InvokeArgument<0>("Hi").
|
||||
//
|
||||
// Since this function is defined inline, the compiler can get rid of
|
||||
// the copying of the arguments. Therefore the performance won't be
|
||||
// hurt.
|
||||
template <size_t N, typename A1>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> >
|
||||
InvokeArgument(A1 a1) {
|
||||
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction2<N, A1, A2> >
|
||||
InvokeArgument(A1 a1, A2 a2) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction2<N, A1, A2>(a1, a2));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction3<N, A1, A2, A3> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction3<N, A1, A2, A3>(a1, a2, a3));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction4<N, A1, A2, A3, A4> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction4<N, A1, A2, A3, A4>(a1, a2, a3, a4));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction5<N, A1, A2, A3, A4,
|
||||
A5> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction5<N, A1, A2, A3, A4, A5>(a1, a2, a3, a4,
|
||||
a5));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction6<N, A1, A2, A3, A4, A5,
|
||||
A6> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction6<N, A1, A2, A3, A4, A5, A6>(a1, a2, a3,
|
||||
a4, a5, a6));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction7<N, A1, A2, A3, A4, A5,
|
||||
A6, A7> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction7<N, A1, A2, A3, A4, A5, A6, A7>(a1, a2,
|
||||
a3, a4, a5, a6, a7));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction8<N, A1, A2, A3, A4, A5,
|
||||
A6, A7, A8> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction8<N, A1, A2, A3, A4, A5, A6, A7, A8>(a1,
|
||||
a2, a3, a4, a5, a6, a7, a8));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction9<N, A1, A2, A3, A4, A5,
|
||||
A6, A7, A8, A9> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction9<N, A1, A2, A3, A4, A5, A6, A7, A8,
|
||||
A9>(a1, a2, a3, a4, a5, a6, a7, a8, a9));
|
||||
}
|
||||
|
||||
template <size_t N, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9,
|
||||
typename A10>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction10<N, A1, A2, A3, A4,
|
||||
A5, A6, A7, A8, A9, A10> >
|
||||
InvokeArgument(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9,
|
||||
A10 a10) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction10<N, A1, A2, A3, A4, A5, A6, A7, A8, A9,
|
||||
A10>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
|
||||
}
|
||||
|
||||
// WithoutArgs(inner_action) can be used in a mock function with a
|
||||
// non-empty argument list to perform inner_action, which takes no
|
||||
// argument. In other words, it adapts an action accepting no
|
||||
@ -2715,271 +2323,153 @@ DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
|
||||
// updated.
|
||||
namespace testing {
|
||||
|
||||
namespace internal {
|
||||
// Various overloads for InvokeArgument<N>().
|
||||
//
|
||||
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
||||
// (0-based) argument, which must be a k-ary callable, of the mock
|
||||
// function, with arguments a1, a2, ..., a_k.
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// 1. The arguments are passed by value by default. If you need to
|
||||
// pass an argument by reference, wrap it inside ByRef(). For
|
||||
// example,
|
||||
//
|
||||
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
|
||||
//
|
||||
// passes 5 and string("Hello") by value, and passes foo by
|
||||
// reference.
|
||||
//
|
||||
// 2. If the callable takes an argument by reference but ByRef() is
|
||||
// not used, it will receive the reference to a copy of the value,
|
||||
// instead of the original value. For example, when the 0-th
|
||||
// argument of the mock function takes a const string&, the action
|
||||
//
|
||||
// InvokeArgument<0>(string("Hello"))
|
||||
//
|
||||
// makes a copy of the temporary string("Hello") object and passes a
|
||||
// reference of the copy, instead of the original temporary object,
|
||||
// to the callable. This makes it easy for a user to define an
|
||||
// InvokeArgument action from temporary values and have it performed
|
||||
// later.
|
||||
|
||||
// Saves argument #0 to where the pointer points.
|
||||
ACTION_P(SaveArg0, pointer) { *pointer = arg0; }
|
||||
|
||||
// Assigns 'value' to the variable referenced by argument #0.
|
||||
ACTION_P(SetArg0Referee, value) {
|
||||
// Ensures that argument #0 is a reference. If you get a compiler
|
||||
// error on the next line, you are using SetArgReferee<k>(value) in
|
||||
// a mock function whose k-th (0-based) argument is not a reference.
|
||||
GMOCK_COMPILE_ASSERT_(internal::is_reference<arg0_type>::value,
|
||||
SetArgReferee_must_be_used_with_a_reference_argument);
|
||||
arg0 = value;
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_0_VALUE_PARAMS()) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args));
|
||||
}
|
||||
|
||||
// ReturnNewAction<T> creates and returns a new instance of an object each time
|
||||
// it is performed. It is overloaded to work with constructors that take
|
||||
// different numbers of arguments.
|
||||
// Returns a new instance of T using a nullary constructor with the given
|
||||
// arguments.
|
||||
template <typename T>
|
||||
class ReturnNewAction0 {
|
||||
public:
|
||||
ReturnNewAction0() {}
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_1_VALUE_PARAMS(p0)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0);
|
||||
}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T();
|
||||
}
|
||||
private:
|
||||
};
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_2_VALUE_PARAMS(p0, p1)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1);
|
||||
}
|
||||
|
||||
// Returns a new instance of T using a unary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1>
|
||||
class ReturnNewAction1 {
|
||||
public:
|
||||
explicit ReturnNewAction1(A1 a1) : arg1_(a1) {}
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_3_VALUE_PARAMS(p0, p1, p2)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2);
|
||||
}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
};
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3);
|
||||
}
|
||||
|
||||
// Returns a new instance of T using a binary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2>
|
||||
class ReturnNewAction2 {
|
||||
public:
|
||||
ReturnNewAction2(A1 a1, A2 a2) : arg1_(a1), arg2_(a2) {}
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4);
|
||||
}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
};
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5);
|
||||
}
|
||||
|
||||
// Returns a new instance of T using a ternary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3>
|
||||
class ReturnNewAction3 {
|
||||
public:
|
||||
ReturnNewAction3(A1 a1, A2 a2, A3 a3) : arg1_(a1), arg2_(a2), arg3_(a3) {}
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6);
|
||||
}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
};
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7);
|
||||
}
|
||||
|
||||
// Returns a new instance of T using a 4-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4>
|
||||
class ReturnNewAction4 {
|
||||
public:
|
||||
ReturnNewAction4(A1 a1, A2 a2, A3 a3, A4 a4) : arg1_(a1), arg2_(a2),
|
||||
arg3_(a3), arg4_(a4) {}
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8);
|
||||
}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 5-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5>
|
||||
class ReturnNewAction5 {
|
||||
public:
|
||||
ReturnNewAction5(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) : arg1_(a1), arg2_(a2),
|
||||
arg3_(a3), arg4_(a4), arg5_(a5) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 6-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6>
|
||||
class ReturnNewAction6 {
|
||||
public:
|
||||
ReturnNewAction6(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) : arg1_(a1),
|
||||
arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5), arg6_(a6) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 7-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7>
|
||||
class ReturnNewAction7 {
|
||||
public:
|
||||
ReturnNewAction7(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
|
||||
A7 a7) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
|
||||
arg6_(a6), arg7_(a7) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 8-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8>
|
||||
class ReturnNewAction8 {
|
||||
public:
|
||||
ReturnNewAction8(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7,
|
||||
A8 a8) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
|
||||
arg6_(a6), arg7_(a7), arg8_(a8) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 9-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9>
|
||||
class ReturnNewAction9 {
|
||||
public:
|
||||
ReturnNewAction9(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
|
||||
A9 a9) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
|
||||
arg6_(a6), arg7_(a7), arg8_(a8), arg9_(a9) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_, arg9_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
const A9 arg9_;
|
||||
};
|
||||
|
||||
// Returns a new instance of T using a 10-ary constructor with the given
|
||||
// arguments.
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9,
|
||||
typename A10>
|
||||
class ReturnNewAction10 {
|
||||
public:
|
||||
ReturnNewAction10(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8,
|
||||
A9 a9, A10 a10) : arg1_(a1), arg2_(a2), arg3_(a3), arg4_(a4), arg5_(a5),
|
||||
arg6_(a6), arg7_(a7), arg8_(a8), arg9_(a9), arg10_(a10) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T(arg1_, arg2_, arg3_, arg4_, arg5_, arg6_, arg7_, arg8_, arg9_,
|
||||
arg10_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
const A2 arg2_;
|
||||
const A3 arg3_;
|
||||
const A4 arg4_;
|
||||
const A5 arg5_;
|
||||
const A6 arg6_;
|
||||
const A7 arg7_;
|
||||
const A8 arg8_;
|
||||
const A9 arg9_;
|
||||
const A10 arg10_;
|
||||
};
|
||||
|
||||
// Deletes the object pointed to by argument #0.
|
||||
ACTION(DeleteArg0) { delete arg0; }
|
||||
|
||||
} // namespace internal
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
|
||||
}
|
||||
|
||||
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
|
||||
// mock function to *pointer.
|
||||
template <int k, typename Pointer>
|
||||
inline internal::WithArgsAction<internal::SaveArg0ActionP<Pointer>, k>
|
||||
SaveArg(const Pointer& pointer) {
|
||||
return WithArg<k>(internal::SaveArg0(pointer));
|
||||
ACTION_TEMPLATE(SaveArg,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_1_VALUE_PARAMS(pointer)) {
|
||||
*pointer = ::std::tr1::get<k>(args);
|
||||
}
|
||||
|
||||
// Action SetArgReferee<k>(value) assigns 'value' to the variable
|
||||
// referenced by the k-th (0-based) argument of the mock function.
|
||||
template <int k, typename Value>
|
||||
inline internal::WithArgsAction<internal::SetArg0RefereeActionP<Value>, k>
|
||||
SetArgReferee(const Value& value) {
|
||||
return WithArg<k>(internal::SetArg0Referee(value));
|
||||
ACTION_TEMPLATE(SetArgReferee,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_1_VALUE_PARAMS(value)) {
|
||||
typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
|
||||
// Ensures that argument #k is a reference. If you get a compiler
|
||||
// error on the next line, you are using SetArgReferee<k>(value) in
|
||||
// a mock function whose k-th (0-based) argument is not a reference.
|
||||
GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
|
||||
SetArgReferee_must_be_used_with_a_reference_argument);
|
||||
::std::tr1::get<k>(args) = value;
|
||||
}
|
||||
|
||||
// Action SetArrayArgument<k>(first, last) copies the elements in
|
||||
// source range [first, last) to the array pointed to by the k-th
|
||||
// (0-based) argument, which can be either a pointer or an
|
||||
// iterator. The action does not take ownership of the elements in the
|
||||
// source range.
|
||||
ACTION_TEMPLATE(SetArrayArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_2_VALUE_PARAMS(first, last)) {
|
||||
// Microsoft compiler deprecates ::std::copy, so we want to suppress warning
|
||||
// 4996 (Function call with parameters that may be unsafe) there.
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(push) // Saves the current warning state.
|
||||
#pragma warning(disable:4996) // Temporarily disables warning 4996.
|
||||
#endif
|
||||
::std::copy(first, last, ::std::tr1::get<k>(args));
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(pop) // Restores the warning state.
|
||||
#endif
|
||||
}
|
||||
|
||||
// Various overloads for ReturnNew<T>().
|
||||
@ -2987,106 +2477,78 @@ SetArgReferee(const Value& value) {
|
||||
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
|
||||
// instance of type T, constructed on the heap with constructor arguments
|
||||
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
|
||||
template <typename T>
|
||||
inline PolymorphicAction<internal::ReturnNewAction0<T> >
|
||||
ReturnNew() {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction0<T>());
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_0_VALUE_PARAMS()) {
|
||||
return new T();
|
||||
}
|
||||
|
||||
template <typename T, typename A1>
|
||||
inline PolymorphicAction<internal::ReturnNewAction1<T, A1> >
|
||||
ReturnNew(A1 a1) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction1<T, A1>(a1));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_1_VALUE_PARAMS(p0)) {
|
||||
return new T(p0);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2>
|
||||
inline PolymorphicAction<internal::ReturnNewAction2<T, A1, A2> >
|
||||
ReturnNew(A1 a1, A2 a2) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction2<T, A1, A2>(a1, a2));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_2_VALUE_PARAMS(p0, p1)) {
|
||||
return new T(p0, p1);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3>
|
||||
inline PolymorphicAction<internal::ReturnNewAction3<T, A1, A2, A3> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction3<T, A1, A2, A3>(a1, a2, a3));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_3_VALUE_PARAMS(p0, p1, p2)) {
|
||||
return new T(p0, p1, p2);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4>
|
||||
inline PolymorphicAction<internal::ReturnNewAction4<T, A1, A2, A3, A4> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction4<T, A1, A2, A3, A4>(a1, a2, a3, a4));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
|
||||
return new T(p0, p1, p2, p3);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5>
|
||||
inline PolymorphicAction<internal::ReturnNewAction5<T, A1, A2, A3, A4, A5> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction5<T, A1, A2, A3, A4, A5>(a1, a2, a3, a4, a5));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
|
||||
return new T(p0, p1, p2, p3, p4);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6>
|
||||
inline PolymorphicAction<internal::ReturnNewAction6<T, A1, A2, A3, A4, A5, A6> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction6<T, A1, A2, A3, A4, A5, A6>(a1, a2, a3, a4, a5,
|
||||
a6));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
|
||||
return new T(p0, p1, p2, p3, p4, p5);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7>
|
||||
inline PolymorphicAction<internal::ReturnNewAction7<T, A1, A2, A3, A4, A5, A6,
|
||||
A7> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction7<T, A1, A2, A3, A4, A5, A6, A7>(a1, a2, a3, a4,
|
||||
a5, a6, a7));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
|
||||
return new T(p0, p1, p2, p3, p4, p5, p6);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8>
|
||||
inline PolymorphicAction<internal::ReturnNewAction8<T, A1, A2, A3, A4, A5, A6,
|
||||
A7, A8> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction8<T, A1, A2, A3, A4, A5, A6, A7, A8>(a1, a2, a3,
|
||||
a4, a5, a6, a7, a8));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
|
||||
return new T(p0, p1, p2, p3, p4, p5, p6, p7);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9>
|
||||
inline PolymorphicAction<internal::ReturnNewAction9<T, A1, A2, A3, A4, A5, A6,
|
||||
A7, A8, A9> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction9<T, A1, A2, A3, A4, A5, A6, A7, A8, A9>(a1, a2,
|
||||
a3, a4, a5, a6, a7, a8, a9));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
|
||||
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8);
|
||||
}
|
||||
|
||||
template <typename T, typename A1, typename A2, typename A3, typename A4,
|
||||
typename A5, typename A6, typename A7, typename A8, typename A9,
|
||||
typename A10>
|
||||
inline PolymorphicAction<internal::ReturnNewAction10<T, A1, A2, A3, A4, A5, A6,
|
||||
A7, A8, A9, A10> >
|
||||
ReturnNew(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9,
|
||||
A10 a10) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction10<T, A1, A2, A3, A4, A5, A6, A7, A8, A9,
|
||||
A10>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
|
||||
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
|
||||
}
|
||||
|
||||
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
|
||||
// function.
|
||||
template <int k>
|
||||
inline internal::WithArgsAction<internal::DeleteArg0Action, k>
|
||||
DeleteArg() {
|
||||
return WithArg<k>(internal::DeleteArg0());
|
||||
ACTION_TEMPLATE(DeleteArg,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_0_VALUE_PARAMS()) {
|
||||
delete ::std::tr1::get<k>(args);
|
||||
}
|
||||
|
||||
// Action Throw(exception) can be used in a mock function of any type
|
||||
|
@ -198,77 +198,6 @@ $var Ts = [[$for j, [[T$j]]]]
|
||||
|
||||
}; // class CallableHelper
|
||||
|
||||
// Invokes a nullary callable argument.
|
||||
template <size_t N>
|
||||
class InvokeArgumentAction0 {
|
||||
public:
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
static Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args));
|
||||
}
|
||||
};
|
||||
|
||||
// Invokes a unary callable argument with the given argument.
|
||||
template <size_t N, typename A1>
|
||||
class InvokeArgumentAction1 {
|
||||
public:
|
||||
// We deliberately pass a1 by value instead of const reference here
|
||||
// in case it is a C-string literal.
|
||||
//
|
||||
// Since this function is defined inline, the compiler can get rid
|
||||
// of the copying of the arguments. Therefore the performance won't
|
||||
// be hurt.
|
||||
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_);
|
||||
}
|
||||
private:
|
||||
const A1 arg1_;
|
||||
};
|
||||
|
||||
$range i 2..n
|
||||
$for i [[
|
||||
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
|
||||
$range j 1..i
|
||||
$var typename_As = [[$for j, [[typename A$j]]]]
|
||||
$var args_ = [[$for j, [[arg$j[[]]_]]]]
|
||||
|
||||
// Invokes a $arity callable argument with the given arguments.
|
||||
template <size_t N, $typename_As>
|
||||
class InvokeArgumentAction$i {
|
||||
public:
|
||||
InvokeArgumentAction$i($for j, [[A$j a$j]]) :
|
||||
$for j, [[arg$j[[]]_(a$j)]] {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& args) {
|
||||
$if i <= 4 [[
|
||||
|
||||
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), $args_);
|
||||
|
||||
]] $else [[
|
||||
|
||||
// We extract the callable to a variable before invoking it, in
|
||||
// case it is a functor passed by value and its operator() is not
|
||||
// const.
|
||||
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function =
|
||||
::std::tr1::get<N>(args);
|
||||
return function($args_);
|
||||
|
||||
]]
|
||||
}
|
||||
private:
|
||||
$for j [[
|
||||
|
||||
const A$j arg$j[[]]_;
|
||||
]]
|
||||
|
||||
};
|
||||
|
||||
]]
|
||||
|
||||
// An INTERNAL macro for extracting the type of a tuple field. It's
|
||||
// subject to change without notice - DO NOT USE IN USER CODE!
|
||||
#define GMOCK_FIELD_(Tuple, N) \
|
||||
@ -478,74 +407,6 @@ inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
|
||||
return internal::ReferenceWrapper<T>(l_value);
|
||||
}
|
||||
|
||||
// Various overloads for InvokeArgument<N>().
|
||||
//
|
||||
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
||||
// (0-based) argument, which must be a k-ary callable, of the mock
|
||||
// function, with arguments a1, a2, ..., a_k.
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// 1. The arguments are passed by value by default. If you need to
|
||||
// pass an argument by reference, wrap it inside ByRef(). For
|
||||
// example,
|
||||
//
|
||||
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
|
||||
//
|
||||
// passes 5 and string("Hello") by value, and passes foo by
|
||||
// reference.
|
||||
//
|
||||
// 2. If the callable takes an argument by reference but ByRef() is
|
||||
// not used, it will receive the reference to a copy of the value,
|
||||
// instead of the original value. For example, when the 0-th
|
||||
// argument of the mock function takes a const string&, the action
|
||||
//
|
||||
// InvokeArgument<0>(string("Hello"))
|
||||
//
|
||||
// makes a copy of the temporary string("Hello") object and passes a
|
||||
// reference of the copy, instead of the original temporary object,
|
||||
// to the callable. This makes it easy for a user to define an
|
||||
// InvokeArgument action from temporary values and have it performed
|
||||
// later.
|
||||
template <size_t N>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() {
|
||||
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>());
|
||||
}
|
||||
|
||||
// We deliberately pass a1 by value instead of const reference here in
|
||||
// case it is a C-string literal. If we had declared the parameter as
|
||||
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler
|
||||
// would've thought A1 is 'char[3]', which causes trouble as the
|
||||
// implementation needs to copy a value of type A1. By declaring the
|
||||
// parameter as 'A1 a1', the compiler will correctly infer that A1 is
|
||||
// 'const char*' when it sees InvokeArgument<0>("Hi").
|
||||
//
|
||||
// Since this function is defined inline, the compiler can get rid of
|
||||
// the copying of the arguments. Therefore the performance won't be
|
||||
// hurt.
|
||||
template <size_t N, typename A1>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> >
|
||||
InvokeArgument(A1 a1) {
|
||||
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1));
|
||||
}
|
||||
|
||||
$range i 2..n
|
||||
$for i [[
|
||||
$range j 1..i
|
||||
$var typename_As = [[$for j, [[typename A$j]]]]
|
||||
$var As = [[$for j, [[A$j]]]]
|
||||
$var Aas = [[$for j, [[A$j a$j]]]]
|
||||
$var as = [[$for j, [[a$j]]]]
|
||||
|
||||
template <size_t N, $typename_As>
|
||||
inline PolymorphicAction<internal::InvokeArgumentAction$i<N, $As> >
|
||||
InvokeArgument($Aas) {
|
||||
return MakePolymorphicAction(
|
||||
internal::InvokeArgumentAction$i<N, $As>($as));
|
||||
}
|
||||
|
||||
]]
|
||||
|
||||
// WithoutArgs(inner_action) can be used in a mock function with a
|
||||
// non-empty argument list to perform inner_action, which takes no
|
||||
// argument. In other words, it adapts an action accepting no
|
||||
@ -1025,76 +886,89 @@ $$ // show up in the generated code.
|
||||
// updated.
|
||||
namespace testing {
|
||||
|
||||
namespace internal {
|
||||
// Various overloads for InvokeArgument<N>().
|
||||
//
|
||||
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
||||
// (0-based) argument, which must be a k-ary callable, of the mock
|
||||
// function, with arguments a1, a2, ..., a_k.
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// 1. The arguments are passed by value by default. If you need to
|
||||
// pass an argument by reference, wrap it inside ByRef(). For
|
||||
// example,
|
||||
//
|
||||
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
|
||||
//
|
||||
// passes 5 and string("Hello") by value, and passes foo by
|
||||
// reference.
|
||||
//
|
||||
// 2. If the callable takes an argument by reference but ByRef() is
|
||||
// not used, it will receive the reference to a copy of the value,
|
||||
// instead of the original value. For example, when the 0-th
|
||||
// argument of the mock function takes a const string&, the action
|
||||
//
|
||||
// InvokeArgument<0>(string("Hello"))
|
||||
//
|
||||
// makes a copy of the temporary string("Hello") object and passes a
|
||||
// reference of the copy, instead of the original temporary object,
|
||||
// to the callable. This makes it easy for a user to define an
|
||||
// InvokeArgument action from temporary values and have it performed
|
||||
// later.
|
||||
|
||||
// Saves argument #0 to where the pointer points.
|
||||
ACTION_P(SaveArg0, pointer) { *pointer = arg0; }
|
||||
|
||||
// Assigns 'value' to the variable referenced by argument #0.
|
||||
ACTION_P(SetArg0Referee, value) {
|
||||
// Ensures that argument #0 is a reference. If you get a compiler
|
||||
// error on the next line, you are using SetArgReferee<k>(value) in
|
||||
// a mock function whose k-th (0-based) argument is not a reference.
|
||||
GMOCK_COMPILE_ASSERT_(internal::is_reference<arg0_type>::value,
|
||||
SetArgReferee_must_be_used_with_a_reference_argument);
|
||||
arg0 = value;
|
||||
}
|
||||
|
||||
// ReturnNewAction<T> creates and returns a new instance of an object each time
|
||||
// it is performed. It is overloaded to work with constructors that take
|
||||
// different numbers of arguments.
|
||||
$range i 0..n
|
||||
$for i [[
|
||||
$var arity = [[ $if i==0 [[nullary]]
|
||||
$elif i==1 [[unary]]
|
||||
$elif i==2 [[binary]]
|
||||
$elif i==3 [[ternary]]
|
||||
$else [[$i-ary]]]]
|
||||
$range j 1..i
|
||||
$var typename_As = [[$for j [[, typename A$j]]]]
|
||||
$var args_ = [[$for j, [[arg$j[[]]_]]]]
|
||||
$range j 0..i-1
|
||||
|
||||
// Returns a new instance of T using a $arity constructor with the given
|
||||
// arguments.
|
||||
template <typename T$typename_As>
|
||||
class ReturnNewAction$i {
|
||||
public:
|
||||
$if i==1 [[explicit ]]ReturnNewAction$i($for j, [[A$j a$j]])$if i>0 [[ : ]]
|
||||
$for j, [[arg$j[[]]_(a$j)]] {}
|
||||
|
||||
template <typename Result, typename ArgumentTuple>
|
||||
Result Perform(const ArgumentTuple& /* args */) {
|
||||
return new T($args_);
|
||||
}
|
||||
private:
|
||||
$for j [[
|
||||
|
||||
const A$j arg$j[[]]_;
|
||||
]]
|
||||
|
||||
};
|
||||
ACTION_TEMPLATE(InvokeArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) {
|
||||
return internal::CallableHelper<return_type>::Call(
|
||||
::std::tr1::get<k>(args)$for j [[, p$j]]);
|
||||
}
|
||||
|
||||
]]
|
||||
|
||||
// Deletes the object pointed to by argument #0.
|
||||
ACTION(DeleteArg0) { delete arg0; }
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
|
||||
// mock function to *pointer.
|
||||
template <int k, typename Pointer>
|
||||
inline internal::WithArgsAction<internal::SaveArg0ActionP<Pointer>, k>
|
||||
SaveArg(const Pointer& pointer) {
|
||||
return WithArg<k>(internal::SaveArg0(pointer));
|
||||
ACTION_TEMPLATE(SaveArg,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_1_VALUE_PARAMS(pointer)) {
|
||||
*pointer = ::std::tr1::get<k>(args);
|
||||
}
|
||||
|
||||
// Action SetArgReferee<k>(value) assigns 'value' to the variable
|
||||
// referenced by the k-th (0-based) argument of the mock function.
|
||||
template <int k, typename Value>
|
||||
inline internal::WithArgsAction<internal::SetArg0RefereeActionP<Value>, k>
|
||||
SetArgReferee(const Value& value) {
|
||||
return WithArg<k>(internal::SetArg0Referee(value));
|
||||
ACTION_TEMPLATE(SetArgReferee,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_1_VALUE_PARAMS(value)) {
|
||||
typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
|
||||
// Ensures that argument #k is a reference. If you get a compiler
|
||||
// error on the next line, you are using SetArgReferee<k>(value) in
|
||||
// a mock function whose k-th (0-based) argument is not a reference.
|
||||
GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
|
||||
SetArgReferee_must_be_used_with_a_reference_argument);
|
||||
::std::tr1::get<k>(args) = value;
|
||||
}
|
||||
|
||||
// Action SetArrayArgument<k>(first, last) copies the elements in
|
||||
// source range [first, last) to the array pointed to by the k-th
|
||||
// (0-based) argument, which can be either a pointer or an
|
||||
// iterator. The action does not take ownership of the elements in the
|
||||
// source range.
|
||||
ACTION_TEMPLATE(SetArrayArgument,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_2_VALUE_PARAMS(first, last)) {
|
||||
// Microsoft compiler deprecates ::std::copy, so we want to suppress warning
|
||||
// 4996 (Function call with parameters that may be unsafe) there.
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(push) // Saves the current warning state.
|
||||
#pragma warning(disable:4996) // Temporarily disables warning 4996.
|
||||
#endif
|
||||
::std::copy(first, last, ::std::tr1::get<k>(args));
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(pop) // Restores the warning state.
|
||||
#endif
|
||||
}
|
||||
|
||||
// Various overloads for ReturnNew<T>().
|
||||
@ -1104,27 +978,23 @@ SetArgReferee(const Value& value) {
|
||||
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
|
||||
$range i 0..n
|
||||
$for i [[
|
||||
$range j 1..i
|
||||
$var typename_As = [[$for j [[, typename A$j]]]]
|
||||
$var As = [[$for j [[, A$j]]]]
|
||||
$var Aas = [[$for j, [[A$j a$j]]]]
|
||||
$var as = [[$for j, [[a$j]]]]
|
||||
$range j 0..i-1
|
||||
$var ps = [[$for j, [[p$j]]]]
|
||||
|
||||
template <typename T$typename_As>
|
||||
inline PolymorphicAction<internal::ReturnNewAction$i<T$As> >
|
||||
ReturnNew($Aas) {
|
||||
return MakePolymorphicAction(
|
||||
internal::ReturnNewAction$i<T$As>($as));
|
||||
ACTION_TEMPLATE(ReturnNew,
|
||||
HAS_1_TEMPLATE_PARAMS(typename, T),
|
||||
AND_$i[[]]_VALUE_PARAMS($ps)) {
|
||||
return new T($ps);
|
||||
}
|
||||
|
||||
]]
|
||||
|
||||
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
|
||||
// function.
|
||||
template <int k>
|
||||
inline internal::WithArgsAction<internal::DeleteArg0Action, k>
|
||||
DeleteArg() {
|
||||
return WithArg<k>(internal::DeleteArg0());
|
||||
ACTION_TEMPLATE(DeleteArg,
|
||||
HAS_1_TEMPLATE_PARAMS(int, k),
|
||||
AND_0_VALUE_PARAMS()) {
|
||||
delete ::std::tr1::get<k>(args);
|
||||
}
|
||||
|
||||
// Action Throw(exception) can be used in a mock function of any type
|
||||
|
@ -39,6 +39,7 @@
|
||||
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <ostream> // NOLINT
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
@ -340,6 +341,16 @@ Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
|
||||
GMOCK_COMPILE_ASSERT_(
|
||||
internal::is_reference<T>::value || !internal::is_reference<U>::value,
|
||||
cannot_convert_non_referentce_arg_to_reference);
|
||||
// In case both T and U are arithmetic types, enforce that the
|
||||
// conversion is not lossy.
|
||||
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
|
||||
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
|
||||
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
|
||||
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
|
||||
GMOCK_COMPILE_ASSERT_(
|
||||
kTIsOther || kUIsOther ||
|
||||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
|
||||
conversion_of_arithmetic_types_must_be_lossless);
|
||||
return MatcherCast<T>(matcher);
|
||||
}
|
||||
|
||||
@ -1164,8 +1175,8 @@ class EitherOfMatcher {
|
||||
// both Matcher1 and Matcher2 can match.
|
||||
template <typename T>
|
||||
operator Matcher<T>() const {
|
||||
return Matcher<T>(new EitherOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
|
||||
SafeMatcherCast<T>(matcher2_)));
|
||||
return Matcher<T>(new EitherOfMatcherImpl<T>(
|
||||
SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
|
||||
}
|
||||
private:
|
||||
Matcher1 matcher1_;
|
||||
@ -1184,7 +1195,7 @@ class TrulyMatcher {
|
||||
// argument is passed by reference as the predicate may be
|
||||
// interested in the address of the argument.
|
||||
template <typename T>
|
||||
bool Matches(T& x) const {
|
||||
bool Matches(T& x) const { // NOLINT
|
||||
#if GTEST_OS_WINDOWS
|
||||
// MSVC warns about converting a value into bool (warning 4800).
|
||||
#pragma warning(push) // Saves the current warning state.
|
||||
|
@ -341,12 +341,11 @@ inline void PrintTo(char* s, ::std::ostream* os) {
|
||||
PrintTo(implicit_cast<const char*>(s), os);
|
||||
}
|
||||
|
||||
// MSVC compiler can be configured to define whar_t as a typedef
|
||||
// of unsigned short. Defining an overload for const wchar_t* in that case
|
||||
// would cause pointers to unsigned shorts be printed as wide strings,
|
||||
// possibly accessing more memory than intended and causing invalid
|
||||
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
|
||||
// wchar_t is implemented as a native type.
|
||||
// MSVC can be configured to define wchar_t as a typedef of unsigned
|
||||
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
|
||||
// type. When wchar_t is a typedef, defining an overload for const
|
||||
// wchar_t* would cause unsigned short* be printed as a wide string,
|
||||
// possibly causing invalid memory accesses.
|
||||
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
|
||||
// Overloads for wide C strings
|
||||
void PrintTo(const wchar_t* s, ::std::ostream* os);
|
||||
|
@ -1359,6 +1359,20 @@ class FunctionMockerBase : public UntypedFunctionMockerBase {
|
||||
std::vector<DefaultActionSpec<F> > default_actions_;
|
||||
// All expectations for this function mocker.
|
||||
Expectations expectations_;
|
||||
|
||||
// There is no generally useful and implementable semantics of
|
||||
// copying a mock object, so copying a mock is usually a user error.
|
||||
// Thus we disallow copying function mockers. If the user really
|
||||
// wants to copy a mock object, he should implement his own copy
|
||||
// operation, for example:
|
||||
//
|
||||
// class MockFoo : public Foo {
|
||||
// public:
|
||||
// // Defines a copy constructor explicitly.
|
||||
// MockFoo(const MockFoo& src) {}
|
||||
// ...
|
||||
// };
|
||||
GTEST_DISALLOW_COPY_AND_ASSIGN_(FunctionMockerBase);
|
||||
}; // class FunctionMockerBase
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
@ -157,7 +157,7 @@ inline Element* GetRawPointer(Element* p) { return p; }
|
||||
// This comparator allows linked_ptr to be stored in sets.
|
||||
template <typename T>
|
||||
struct LinkedPtrLessThan {
|
||||
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
|
||||
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
|
||||
const ::testing::internal::linked_ptr<T>& rhs) const {
|
||||
return lhs.get() < rhs.get();
|
||||
}
|
||||
@ -210,17 +210,154 @@ class ImplicitlyConvertible {
|
||||
template <typename From, typename To>
|
||||
const bool ImplicitlyConvertible<From, To>::value;
|
||||
|
||||
// In what follows, we use the term "kind" to indicate whether a type
|
||||
// is bool, an integer type (excluding bool), a floating-point type,
|
||||
// or none of them. This categorization is useful for determining
|
||||
// when a matcher argument type can be safely converted to another
|
||||
// type in the implementation of SafeMatcherCast.
|
||||
enum TypeKind {
|
||||
kBool, kInteger, kFloatingPoint, kOther
|
||||
};
|
||||
|
||||
// KindOf<T>::value is the kind of type T.
|
||||
template <typename T> struct KindOf {
|
||||
enum { value = kOther }; // The default kind.
|
||||
};
|
||||
|
||||
// This macro declares that the kind of 'type' is 'kind'.
|
||||
#define GMOCK_DECLARE_KIND_(type, kind) \
|
||||
template <> struct KindOf<type> { enum { value = kind }; }
|
||||
|
||||
GMOCK_DECLARE_KIND_(bool, kBool);
|
||||
|
||||
// All standard integer types.
|
||||
GMOCK_DECLARE_KIND_(char, kInteger);
|
||||
GMOCK_DECLARE_KIND_(signed char, kInteger);
|
||||
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
|
||||
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
|
||||
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
|
||||
GMOCK_DECLARE_KIND_(int, kInteger);
|
||||
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
|
||||
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
|
||||
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
|
||||
|
||||
// MSVC can be configured to define wchar_t as a typedef of unsigned
|
||||
// short. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t is a
|
||||
// native type.
|
||||
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
|
||||
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
|
||||
#endif
|
||||
|
||||
// Non-standard integer types.
|
||||
GMOCK_DECLARE_KIND_(Int64, kInteger);
|
||||
GMOCK_DECLARE_KIND_(UInt64, kInteger);
|
||||
|
||||
// All standard floating-point types.
|
||||
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
|
||||
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
|
||||
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
|
||||
|
||||
#undef GMOCK_DECLARE_KIND_
|
||||
|
||||
// Evaluates to the kind of 'type'.
|
||||
#define GMOCK_KIND_OF_(type) \
|
||||
static_cast< ::testing::internal::TypeKind>( \
|
||||
::testing::internal::KindOf<type>::value)
|
||||
|
||||
// Evaluates to true iff integer type T is signed.
|
||||
#define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
|
||||
|
||||
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
|
||||
// is true iff arithmetic type From can be losslessly converted to
|
||||
// arithmetic type To.
|
||||
//
|
||||
// It's the user's responsibility to ensure that both From and To are
|
||||
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
||||
// reference) built-in arithmetic types, kFromKind is the kind of
|
||||
// From, and kToKind is the kind of To; the value is
|
||||
// implementation-defined when the above pre-condition is violated.
|
||||
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
|
||||
struct LosslessArithmeticConvertibleImpl : public false_type {};
|
||||
|
||||
// Converting bool to bool is lossless.
|
||||
template <>
|
||||
struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
|
||||
: public true_type {}; // NOLINT
|
||||
|
||||
// Converting bool to any integer type is lossless.
|
||||
template <typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
|
||||
: public true_type {}; // NOLINT
|
||||
|
||||
// Converting bool to any floating-point type is lossless.
|
||||
template <typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
|
||||
: public true_type {}; // NOLINT
|
||||
|
||||
// Converting an integer to bool is lossy.
|
||||
template <typename From>
|
||||
struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
|
||||
: public false_type {}; // NOLINT
|
||||
|
||||
// Converting an integer to another non-bool integer is lossless iff
|
||||
// the target type's range encloses the source type's range.
|
||||
template <typename From, typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
|
||||
: public bool_constant<
|
||||
// When converting from a smaller size to a larger size, we are
|
||||
// fine as long as we are not converting from signed to unsigned.
|
||||
((sizeof(From) < sizeof(To)) &&
|
||||
(!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
|
||||
// When converting between the same size, the signedness must match.
|
||||
((sizeof(From) == sizeof(To)) &&
|
||||
(GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT
|
||||
|
||||
#undef GMOCK_IS_SIGNED_
|
||||
|
||||
// Converting an integer to a floating-point type may be lossy, since
|
||||
// the format of a floating-point number is implementation-defined.
|
||||
template <typename From, typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
|
||||
: public false_type {}; // NOLINT
|
||||
|
||||
// Converting a floating-point to bool is lossy.
|
||||
template <typename From>
|
||||
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
|
||||
: public false_type {}; // NOLINT
|
||||
|
||||
// Converting a floating-point to an integer is lossy.
|
||||
template <typename From, typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
|
||||
: public false_type {}; // NOLINT
|
||||
|
||||
// Converting a floating-point to another floating-point is lossless
|
||||
// iff the target type is at least as big as the source type.
|
||||
template <typename From, typename To>
|
||||
struct LosslessArithmeticConvertibleImpl<
|
||||
kFloatingPoint, From, kFloatingPoint, To>
|
||||
: public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT
|
||||
|
||||
// LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
|
||||
// type From can be losslessly converted to arithmetic type To.
|
||||
//
|
||||
// It's the user's responsibility to ensure that both From and To are
|
||||
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
||||
// reference) built-in arithmetic types; the value is
|
||||
// implementation-defined when the above pre-condition is violated.
|
||||
template <typename From, typename To>
|
||||
struct LosslessArithmeticConvertible
|
||||
: public LosslessArithmeticConvertibleImpl<
|
||||
GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT
|
||||
|
||||
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
|
||||
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
|
||||
// of those.
|
||||
template <typename T>
|
||||
struct IsAProtocolMessage {
|
||||
static const bool value =
|
||||
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
|
||||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value;
|
||||
struct IsAProtocolMessage
|
||||
: public bool_constant<
|
||||
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
|
||||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
|
||||
};
|
||||
template <typename T>
|
||||
const bool IsAProtocolMessage<T>::value;
|
||||
|
||||
// When the compiler sees expression IsContainerTest<C>(0), the first
|
||||
// overload of IsContainerTest will be picked if C is an STL-style
|
||||
@ -314,6 +451,8 @@ void Log(LogSeverity severity, const string& message, int stack_frames_to_skip);
|
||||
// to declare an unused << operator in the global namespace.
|
||||
struct Unused {};
|
||||
|
||||
// TODO(wan@google.com): group all type utilities together.
|
||||
|
||||
// Type traits.
|
||||
|
||||
// is_reference<T>::value is non-zero iff T is a reference type.
|
||||
@ -325,8 +464,8 @@ template <typename T1, typename T2> struct type_equals : public false_type {};
|
||||
template <typename T> struct type_equals<T, T> : public true_type {};
|
||||
|
||||
// remove_reference<T>::type removes the reference from type T, if any.
|
||||
template <typename T> struct remove_reference { typedef T type; };
|
||||
template <typename T> struct remove_reference<T&> { typedef T type; };
|
||||
template <typename T> struct remove_reference { typedef T type; }; // NOLINT
|
||||
template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
|
||||
|
||||
// Invalid<T>() returns an invalid value of type T. This is useful
|
||||
// when a value of type T is needed for compilation, but the statement
|
||||
|
@ -36,7 +36,7 @@ __author__ = 'wan@google.com (Zhanyong Wan)'
|
||||
import re
|
||||
import sys
|
||||
|
||||
_VERSION = '0.1.0.80421'
|
||||
_VERSION = '1.0.0'
|
||||
|
||||
_COMMON_GMOCK_SYMBOLS = [
|
||||
# Matchers
|
||||
@ -148,11 +148,14 @@ Please use ReturnRef() instead."""
|
||||
def _NeedToReturnSomethingDiagnoser(msg):
|
||||
"""Diagnoses the NRS disease, given the error messages by gcc."""
|
||||
|
||||
regex = (r'(?P<file>.*):(?P<line>\d+):\s+instantiated from here\n'
|
||||
r'.*gmock-actions\.h.*error: void value not ignored')
|
||||
regex = (r'(?P<file>.*):(?P<line>\d+):\s+'
|
||||
r'(instantiated from here\n.'
|
||||
r'*gmock-actions\.h.*error: void value not ignored)'
|
||||
r'|(error: control reaches end of non-void function)')
|
||||
diagnosis = """%(file)s:%(line)s:
|
||||
You are using an action that returns void, but it needs to return
|
||||
*something*. Please tell it *what* to return."""
|
||||
*something*. Please tell it *what* to return. Perhaps you can use
|
||||
the pattern DoAll(some_action, Return(some_value))?"""
|
||||
return _GenericDiagnoser('NRS', 'Need to Return Something',
|
||||
regex, diagnosis, msg)
|
||||
|
||||
@ -324,6 +327,23 @@ Note: the line number may be off; please fix all instances of Return(NULL)."""
|
||||
regex, diagnosis, msg)
|
||||
|
||||
|
||||
def _WrongMockMethodMacroDiagnoser(msg):
|
||||
"""Diagnoses the WMM disease, given the error messages by gcc."""
|
||||
|
||||
regex = (r'(?P<file>.*):(?P<line>\d+):\s+'
|
||||
r'.*this_method_does_not_take_(?P<wrong_args>\d+)_argument.*\n'
|
||||
r'.*\n'
|
||||
r'.*candidates are.*FunctionMocker<[^>]+A(?P<args>\d+)\)>'
|
||||
)
|
||||
|
||||
diagnosis = """%(file)s:%(line)s:
|
||||
You are using MOCK_METHOD%(wrong_args)s to define a mock method that has
|
||||
%(args)s arguments. Use MOCK_METHOD%(args)s (or MOCK_CONST_METHOD%(args)s,
|
||||
MOCK_METHOD%(args)s_T, MOCK_CONST_METHOD%(args)s_T as appropriate) instead."""
|
||||
return _GenericDiagnoser('WMM', 'Wrong MOCK_METHODn macro',
|
||||
regex, diagnosis, msg)
|
||||
|
||||
|
||||
|
||||
_DIAGNOSERS = [
|
||||
_IncompleteByReferenceArgumentDiagnoser,
|
||||
@ -337,6 +357,7 @@ _DIAGNOSERS = [
|
||||
_OverloadedFunctionMatcherDiagnoser,
|
||||
_OverloadedMethodActionDiagnoser1,
|
||||
_OverloadedMethodActionDiagnoser2,
|
||||
_WrongMockMethodMacroDiagnoser,
|
||||
]
|
||||
|
||||
|
||||
|
@ -34,6 +34,7 @@
|
||||
// This file tests the internal utilities.
|
||||
|
||||
#include <gmock/internal/gmock-internal-utils.h>
|
||||
#include <stdlib.h>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
@ -43,6 +44,10 @@
|
||||
#include <gtest/gtest.h>
|
||||
#include <gtest/gtest-spi.h>
|
||||
|
||||
#if GTEST_OS_CYGWIN
|
||||
#include <sys/types.h> // For ssize_t. NOLINT
|
||||
#endif
|
||||
|
||||
namespace testing {
|
||||
namespace internal {
|
||||
|
||||
@ -232,6 +237,141 @@ TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
|
||||
EXPECT_FALSE((ImplicitlyConvertible<Base&, Derived&>::value));
|
||||
}
|
||||
|
||||
// Tests KindOf<T>.
|
||||
|
||||
TEST(KindOfTest, Bool) {
|
||||
EXPECT_EQ(kBool, GMOCK_KIND_OF_(bool)); // NOLINT
|
||||
}
|
||||
|
||||
TEST(KindOfTest, Integer) {
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(char)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(signed char)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned char)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(short)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned short)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(int)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned int)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(long)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned long)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(wchar_t)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(Int64)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(UInt64)); // NOLINT
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(size_t)); // NOLINT
|
||||
#if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_CYGWIN
|
||||
// ssize_t is not defined on Windows and possibly some other OSes.
|
||||
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(ssize_t)); // NOLINT
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(KindOfTest, FloatingPoint) {
|
||||
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(float)); // NOLINT
|
||||
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(double)); // NOLINT
|
||||
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(long double)); // NOLINT
|
||||
}
|
||||
|
||||
TEST(KindOfTest, Other) {
|
||||
EXPECT_EQ(kOther, GMOCK_KIND_OF_(void*)); // NOLINT
|
||||
EXPECT_EQ(kOther, GMOCK_KIND_OF_(char**)); // NOLINT
|
||||
EXPECT_EQ(kOther, GMOCK_KIND_OF_(Base)); // NOLINT
|
||||
}
|
||||
|
||||
// Tests LosslessArithmeticConvertible<T, U>.
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, BoolToBool) {
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<bool, bool>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, BoolToInteger) {
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<bool, char>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<bool, int>::value));
|
||||
EXPECT_TRUE(
|
||||
(LosslessArithmeticConvertible<bool, unsigned long>::value)); // NOLINT
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, BoolToFloatingPoint) {
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<bool, float>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<bool, double>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, IntegerToBool) {
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<unsigned char, bool>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<int, bool>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, IntegerToInteger) {
|
||||
// Unsigned => larger signed is fine.
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<unsigned char, int>::value));
|
||||
|
||||
// Unsigned => larger unsigned is fine.
|
||||
EXPECT_TRUE(
|
||||
(LosslessArithmeticConvertible<unsigned short, UInt64>::value)); // NOLINT
|
||||
|
||||
// Signed => unsigned is not fine.
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<short, UInt64>::value)); // NOLINT
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<
|
||||
signed char, unsigned int>::value)); // NOLINT
|
||||
|
||||
// Same size and same signedness: fine too.
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<
|
||||
unsigned char, unsigned char>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<int, int>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<wchar_t, wchar_t>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<
|
||||
unsigned long, unsigned long>::value)); // NOLINT
|
||||
|
||||
// Same size, different signedness: not fine.
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<
|
||||
unsigned char, signed char>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<int, unsigned int>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<UInt64, Int64>::value));
|
||||
|
||||
// Larger size => smaller size is not fine.
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<long, char>::value)); // NOLINT
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<int, signed char>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<Int64, unsigned int>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, IntegerToFloatingPoint) {
|
||||
// Integers cannot be losslessly converted to floating-points, as
|
||||
// the format of the latter is implementation-defined.
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<char, float>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<int, double>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<
|
||||
short, long double>::value)); // NOLINT
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, FloatingPointToBool) {
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<float, bool>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<double, bool>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, FloatingPointToInteger) {
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<float, long>::value)); // NOLINT
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<double, Int64>::value));
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<long double, int>::value));
|
||||
}
|
||||
|
||||
TEST(LosslessArithmeticConvertibleTest, FloatingPointToFloatingPoint) {
|
||||
// Smaller size => larger size is fine.
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<float, double>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<float, long double>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<double, long double>::value));
|
||||
|
||||
// Same size: fine.
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<float, float>::value));
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<double, double>::value));
|
||||
|
||||
// Larger size => smaller size is not fine.
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<double, float>::value));
|
||||
if (sizeof(double) == sizeof(long double)) { // NOLINT
|
||||
// In some implementations (e.g. MSVC), double and long double
|
||||
// have the same size.
|
||||
EXPECT_TRUE((LosslessArithmeticConvertible<long double, double>::value));
|
||||
} else {
|
||||
EXPECT_FALSE((LosslessArithmeticConvertible<long double, double>::value));
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
|
||||
TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
|
||||
GMOCK_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, const_true);
|
||||
@ -265,8 +405,10 @@ TEST(IsContainerTestTest, WorksForNonContainer) {
|
||||
}
|
||||
|
||||
TEST(IsContainerTestTest, WorksForContainer) {
|
||||
EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool> >(0)));
|
||||
EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::map<int, double> >(0)));
|
||||
EXPECT_EQ(sizeof(IsContainer),
|
||||
sizeof(IsContainerTest<std::vector<bool> >(0)));
|
||||
EXPECT_EQ(sizeof(IsContainer),
|
||||
sizeof(IsContainerTest<std::map<int, double> >(0)));
|
||||
}
|
||||
|
||||
// Tests the TupleMatches() template function.
|
||||
|
@ -376,13 +376,18 @@ TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
|
||||
EXPECT_FALSE(m2.Matches('\n'));
|
||||
}
|
||||
|
||||
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T
|
||||
// can be implicitly converted to U.
|
||||
TEST(SafeMatcherCastTest, FromImplicitlyConvertibleType) {
|
||||
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
|
||||
// T and U are arithmetic types and T can be losslessly converted to
|
||||
// U.
|
||||
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
|
||||
Matcher<double> m1 = DoubleEq(1.0);
|
||||
Matcher<int> m2 = SafeMatcherCast<int>(m1);
|
||||
EXPECT_TRUE(m2.Matches(1));
|
||||
EXPECT_FALSE(m2.Matches(2));
|
||||
Matcher<float> m2 = SafeMatcherCast<float>(m1);
|
||||
EXPECT_TRUE(m2.Matches(1.0f));
|
||||
EXPECT_FALSE(m2.Matches(2.0f));
|
||||
|
||||
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
|
||||
EXPECT_TRUE(m3.Matches('a'));
|
||||
EXPECT_FALSE(m3.Matches('b'));
|
||||
}
|
||||
|
||||
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
|
||||
|
Loading…
x
Reference in New Issue
Block a user