crashpad/util/misc/capture_context_test_util_win.cc

114 lines
4.2 KiB
C++
Raw Normal View History

// Copyright 2018 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/misc/capture_context_test_util.h"
#include "util/win/context_wrappers.h"
#include "base/stl_util.h"
#include "gtest/gtest.h"
namespace crashpad {
namespace test {
void SanityCheckContext(const NativeCPUContext& context) {
#if defined(ARCH_CPU_X86)
constexpr uint32_t must_have = CONTEXT_i386 | CONTEXT_CONTROL |
CONTEXT_INTEGER | CONTEXT_SEGMENTS |
CONTEXT_FLOATING_POINT;
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
ASSERT_EQ(context.ContextFlags & must_have, must_have);
constexpr uint32_t may_have = CONTEXT_EXTENDED_REGISTERS;
ASSERT_EQ(context.ContextFlags & ~(must_have | may_have), 0u);
#elif defined(ARCH_CPU_X86_64)
ASSERT_EQ(
context.ContextFlags,
static_cast<DWORD>(CONTEXT_AMD64 | CONTEXT_CONTROL | CONTEXT_INTEGER |
CONTEXT_SEGMENTS | CONTEXT_FLOATING_POINT));
#endif
#if defined(ARCH_CPU_X86_FAMILY)
// Many bit positions in the flags register are reserved and will always read
// a known value. Most reserved bits are always 0, but bit 1 is always 1.
// Check that the reserved bits are all set to their expected values. Note
// that the set of reserved bits may be relaxed over time with newer CPUs, and
// that this test may need to be changed to reflect these developments. The
// current set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel
// Software Developers Manual, Volume 1: Basic Architecture (253665-055),
// 3.4.3 “EFLAGS Register”, and AMD Architecture Programmers Manual, Volume
// 2: System Programming (24593-3.25), 3.1.6 “RFLAGS Register”.
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.EFlags & 0xffc0802a, 2u);
// CaptureContext() doesnt capture debug registers, so make sure they read 0.
EXPECT_EQ(context.Dr0, 0u);
EXPECT_EQ(context.Dr1, 0u);
EXPECT_EQ(context.Dr2, 0u);
EXPECT_EQ(context.Dr3, 0u);
EXPECT_EQ(context.Dr6, 0u);
EXPECT_EQ(context.Dr7, 0u);
#endif
#if defined(ARCH_CPU_X86)
// fxsave doesnt write these bytes.
for (size_t i = 464; i < base::size(context.ExtendedRegisters); ++i) {
SCOPED_TRACE(i);
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.ExtendedRegisters[i], 0);
}
#elif defined(ARCH_CPU_X86_64)
// mxcsr shows up twice in the context structure. Make sure the values are
// identical.
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.FltSave.MxCsr, context.MxCsr);
// fxsave doesnt write these bytes.
for (size_t i = 0; i < base::size(context.FltSave.Reserved4); ++i) {
SCOPED_TRACE(i);
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.FltSave.Reserved4[i], 0);
}
// CaptureContext() doesnt use these fields.
EXPECT_EQ(context.P1Home, 0u);
EXPECT_EQ(context.P2Home, 0u);
EXPECT_EQ(context.P3Home, 0u);
EXPECT_EQ(context.P4Home, 0u);
EXPECT_EQ(context.P5Home, 0u);
EXPECT_EQ(context.P6Home, 0u);
for (size_t i = 0; i < base::size(context.VectorRegister); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(context.VectorRegister[i].Low, 0u);
EXPECT_EQ(context.VectorRegister[i].High, 0u);
}
EXPECT_EQ(context.VectorControl, 0u);
EXPECT_EQ(context.DebugControl, 0u);
EXPECT_EQ(context.LastBranchToRip, 0u);
EXPECT_EQ(context.LastBranchFromRip, 0u);
EXPECT_EQ(context.LastExceptionToRip, 0u);
EXPECT_EQ(context.LastExceptionFromRip, 0u);
#endif
}
uintptr_t ProgramCounterFromContext(const NativeCPUContext& context) {
return reinterpret_cast<uintptr_t>(ProgramCounterFromCONTEXT(&context));
}
uintptr_t StackPointerFromContext(const NativeCPUContext& context) {
#if defined(ARCH_CPU_X86)
return context.Esp;
#elif defined(ARCH_CPU_X86_64)
return context.Rsp;
#elif defined(ARCH_CPU_ARM64)
return context.Sp;
#endif
}
} // namespace test
} // namespace crashpad