crashpad/util/mach/task_memory_test.cc

556 lines
22 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/mach/task_memory.h"
#include <mach/mach.h>
#include <string.h>
#include <algorithm>
#include <string>
#include "base/mac/scoped_mach_port.h"
#include "base/mac/scoped_mach_vm.h"
#include "base/memory/scoped_ptr.h"
#include "gtest/gtest.h"
#include "util/test/mac/mach_errors.h"
namespace crashpad {
namespace test {
namespace {
TEST(TaskMemory, ReadSelf) {
vm_address_t address = 0;
const vm_size_t kSize = 4 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
region[index] = (index % 256) ^ ((index >> 8) % 256);
}
TaskMemory memory(mach_task_self());
// This tests using both the Read() and ReadMapped() interfaces.
std::string result(kSize, '\0');
scoped_ptr<TaskMemory::MappedMemory> mapped;
// Ensure that the entire region can be read.
ASSERT_TRUE(memory.Read(address, kSize, &result[0]));
EXPECT_EQ(0, memcmp(region, &result[0], kSize));
ASSERT_TRUE((mapped = memory.ReadMapped(address, kSize)));
EXPECT_EQ(0, memcmp(region, mapped->data(), kSize));
// Ensure that a read of length 0 succeeds and doesnt touch the result.
result.assign(kSize, '\0');
std::string zeroes = result;
ASSERT_TRUE(memory.Read(address, 0, &result[0]));
EXPECT_EQ(zeroes, result);
ASSERT_TRUE((mapped = memory.ReadMapped(address, 0)));
// Ensure that a read starting at an unaligned address works.
ASSERT_TRUE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_EQ(0, memcmp(region + 1, &result[0], kSize - 1));
ASSERT_TRUE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
EXPECT_EQ(0, memcmp(region + 1, mapped->data(), kSize - 1));
// Ensure that a read ending at an unaligned address works.
ASSERT_TRUE(memory.Read(address, kSize - 1, &result[0]));
EXPECT_EQ(0, memcmp(region, &result[0], kSize - 1));
ASSERT_TRUE((mapped = memory.ReadMapped(address, kSize - 1)));
EXPECT_EQ(0, memcmp(region, mapped->data(), kSize - 1));
// Ensure that a read starting and ending at unaligned addresses works.
ASSERT_TRUE(memory.Read(address + 1, kSize - 2, &result[0]));
EXPECT_EQ(0, memcmp(region + 1, &result[0], kSize - 2));
ASSERT_TRUE((mapped = memory.ReadMapped(address + 1, kSize - 2)));
EXPECT_EQ(0, memcmp(region + 1, mapped->data(), kSize - 2));
// Ensure that a read of exactly one page works.
ASSERT_TRUE(memory.Read(address + PAGE_SIZE, PAGE_SIZE, &result[0]));
EXPECT_EQ(0, memcmp(region + PAGE_SIZE, &result[0], PAGE_SIZE));
ASSERT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE, PAGE_SIZE)));
EXPECT_EQ(0, memcmp(region + PAGE_SIZE, mapped->data(), PAGE_SIZE));
// Ensure that a read of a single byte works.
ASSERT_TRUE(memory.Read(address + 2, 1, &result[0]));
EXPECT_EQ(region[2], result[0]);
ASSERT_TRUE((mapped = memory.ReadMapped(address + 2, 1)));
EXPECT_EQ(region[2], reinterpret_cast<const char*>(mapped->data())[0]);
// Ensure that a read of length zero works and doesnt touch the data.
result[0] = 'M';
ASSERT_TRUE(memory.Read(address + 3, 0, &result[0]));
EXPECT_EQ('M', result[0]);
ASSERT_TRUE((mapped = memory.ReadMapped(address + 3, 0)));
}
TEST(TaskMemory, ReadSelfUnmapped) {
vm_address_t address = 0;
const vm_size_t kSize = 2 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
region[index] = (index % 255) + 1;
}
kr = vm_protect(
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_protect");
TaskMemory memory(mach_task_self());
std::string result(kSize, '\0');
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
// Do the same thing with the ReadMapped() interface.
scoped_ptr<TaskMemory::MappedMemory> mapped;
EXPECT_FALSE((mapped = memory.ReadMapped(address, kSize)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE, 1)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 2)));
EXPECT_TRUE((mapped = memory.ReadMapped(address, PAGE_SIZE)));
EXPECT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 1)));
// Repeat the test with an unmapped page instead of an unreadable one. This
// portion of the test may be flaky in the presence of other threads, if
// another thread maps something in the region that is deallocated here.
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_deallocate");
vm_owner.reset(address, PAGE_SIZE);
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
// Do the same thing with the ReadMapped() interface.
EXPECT_FALSE((mapped = memory.ReadMapped(address, kSize)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE, 1)));
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 2)));
EXPECT_TRUE((mapped = memory.ReadMapped(address, PAGE_SIZE)));
EXPECT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 1)));
}
// This function consolidates the cast from a char* to mach_vm_address_t in one
// location when reading from the current task.
bool ReadCStringSelf(TaskMemory* memory,
const char* pointer,
std::string* result) {
return memory->ReadCString(reinterpret_cast<mach_vm_address_t>(pointer),
result);
}
TEST(TaskMemory, ReadCStringSelf) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharEmpty, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
const char kConstCharShort[] = "A short const char[]";
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharShort, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
static const char kStaticConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharEmpty, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
static const char kStaticConstCharShort[] = "A short static const char[]";
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharShort, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
std::string string_short("A short std::string in a function");
ASSERT_TRUE(ReadCStringSelf(&memory, &string_short[0], &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
std::string string_long;
const size_t kStringLongSize = 4 * PAGE_SIZE;
for (size_t index = 0; index < kStringLongSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
string_long.append(1, (index % 255) + 1);
}
ASSERT_EQ(kStringLongSize, string_long.size());
ASSERT_TRUE(ReadCStringSelf(&memory, &string_long[0], &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
}
TEST(TaskMemory, ReadCStringSelfUnmapped) {
vm_address_t address = 0;
const vm_size_t kSize = 2 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
region[index] = (index % 255) + 1;
}
kr = vm_protect(
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_protect");
TaskMemory memory(mach_task_self());
std::string result;
EXPECT_FALSE(memory.ReadCString(address, &result));
// Make sure that if the string is NUL-terminated within the mapped memory
// region, it can be read properly.
char terminator_or_not = '\0';
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
ASSERT_TRUE(memory.ReadCString(address, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(PAGE_SIZE - 1u, result.size());
EXPECT_EQ(region, result);
// Repeat the test with an unmapped page instead of an unreadable one. This
// portion of the test may be flaky in the presence of other threads, if
// another thread maps something in the region that is deallocated here.
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_deallocate");
vm_owner.reset(address, PAGE_SIZE);
EXPECT_FALSE(memory.ReadCString(address, &result));
// Clear the result before testing that the string can be read. This makes
// sure that the result is actually filled in, because it already contains the
// expected value from the tests above.
result.clear();
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
ASSERT_TRUE(memory.ReadCString(address, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(PAGE_SIZE - 1u, result.size());
EXPECT_EQ(region, result);
}
// This function consolidates the cast from a char* to mach_vm_address_t in one
// location when reading from the current task.
bool ReadCStringSizeLimitedSelf(TaskMemory* memory,
const char* pointer,
size_t size,
std::string* result) {
return memory->ReadCStringSizeLimited(
reinterpret_cast<mach_vm_address_t>(pointer), size, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharEmpty) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharEmpty, arraysize(kConstCharEmpty), &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharEmpty, arraysize(kConstCharEmpty) + 1, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory, kConstCharEmpty, 0, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharShort) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharShort[] = "A short const char[]";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort), &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort) + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort) - 1, &result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharEmpty) {
TaskMemory memory(mach_task_self());
std::string result;
static const char kStaticConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharEmpty,
arraysize(kStaticConstCharEmpty),
&result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharEmpty,
arraysize(kStaticConstCharEmpty) + 1,
&result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
result.clear();
ASSERT_TRUE(
ReadCStringSizeLimitedSelf(&memory, kStaticConstCharEmpty, 0, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharShort) {
TaskMemory memory(mach_task_self());
std::string result;
static const char kStaticConstCharShort[] = "A short static const char[]";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort),
&result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort) + 1,
&result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort) - 1,
&result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StringShort) {
TaskMemory memory(mach_task_self());
std::string result;
std::string string_short("A short std::string in a function");
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size() + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size() + 2, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size(), &result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StringLong) {
TaskMemory memory(mach_task_self());
std::string result;
std::string string_long;
const size_t kStringLongSize = 4 * PAGE_SIZE;
for (size_t index = 0; index < kStringLongSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
string_long.append(1, (index % 255) + 1);
}
ASSERT_EQ(kStringLongSize, string_long.size());
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size() + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size() + 2, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size(), &result));
}
bool IsAddressMapped(vm_address_t address) {
vm_address_t region_address = address;
vm_size_t region_size;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
vm_region_basic_info_64 info;
mach_port_t object;
kern_return_t kr = vm_region_64(mach_task_self(),
&region_address,
&region_size,
VM_REGION_BASIC_INFO_64,
reinterpret_cast<vm_region_info_t>(&info),
&count,
&object);
if (kr == KERN_SUCCESS) {
// |object| will be MACH_PORT_NULL (10.9.4 xnu-2422.110.17/osfmk/vm/vm_map.c
// vm_map_region()), but the interface acts as if it might carry a send
// right, so treat it as documented.
base::mac::ScopedMachSendRight object_owner(object);
return address >= region_address && address <= region_address + region_size;
}
if (kr == KERN_INVALID_ADDRESS) {
return false;
}
ADD_FAILURE() << MachErrorMessage(kr, "vm_region_64");;
return false;
}
TEST(TaskMemory, MappedMemoryDeallocates) {
// This tests that once a TaskMemory::MappedMemory object is destroyed, it
// releases the mapped memory that it owned. Technically, this test is not
// valid because after the mapping is released, something else (on another
// thread) might wind up mapped in the same address. In the test environment,
// hopefully there are either no other threads or theyre all quiescent, so
// nothing else should wind up mapped in the address.
TaskMemory memory(mach_task_self());
scoped_ptr<TaskMemory::MappedMemory> mapped;
static const char kTestBuffer[] = "hello!";
mach_vm_address_t test_address =
reinterpret_cast<mach_vm_address_t>(&kTestBuffer);
ASSERT_TRUE((mapped = memory.ReadMapped(test_address, sizeof(kTestBuffer))));
EXPECT_EQ(0, memcmp(kTestBuffer, mapped->data(), sizeof(kTestBuffer)));
vm_address_t mapped_address = reinterpret_cast<vm_address_t>(mapped->data());
EXPECT_TRUE(IsAddressMapped(mapped_address));
mapped.reset();
EXPECT_FALSE(IsAddressMapped(mapped_address));
// This is the same but with a big buffer thats definitely larger than a
// single page. This makes sure that the whole mapped region winds up being
// deallocated.
const size_t kBigSize = 4 * PAGE_SIZE;
scoped_ptr<char[]> big_buffer(new char[kBigSize]);
test_address = reinterpret_cast<mach_vm_address_t>(&big_buffer[0]);
ASSERT_TRUE((mapped = memory.ReadMapped(test_address, kBigSize)));
mapped_address = reinterpret_cast<vm_address_t>(mapped->data());
vm_address_t mapped_last_address = mapped_address + kBigSize - 1;
EXPECT_TRUE(IsAddressMapped(mapped_address));
EXPECT_TRUE(IsAddressMapped(mapped_address + PAGE_SIZE));
EXPECT_TRUE(IsAddressMapped(mapped_last_address));
mapped.reset();
EXPECT_FALSE(IsAddressMapped(mapped_address));
EXPECT_FALSE(IsAddressMapped(mapped_address + PAGE_SIZE));
EXPECT_FALSE(IsAddressMapped(mapped_last_address));
}
TEST(TaskMemory, MappedMemoryReadCString) {
// This tests the behavior of TaskMemory::MappedMemory::ReadCString().
TaskMemory memory(mach_task_self());
scoped_ptr<TaskMemory::MappedMemory> mapped;
static const char kTestBuffer[] = "0\0" "2\0" "45\0" "789";
const mach_vm_address_t kTestAddress =
reinterpret_cast<mach_vm_address_t>(&kTestBuffer);
ASSERT_TRUE((mapped = memory.ReadMapped(kTestAddress, 10)));
std::string string;
ASSERT_TRUE(mapped->ReadCString(0, &string));
EXPECT_EQ("0", string);
ASSERT_TRUE(mapped->ReadCString(1, &string));
EXPECT_EQ("", string);
ASSERT_TRUE(mapped->ReadCString(2, &string));
EXPECT_EQ("2", string);
ASSERT_TRUE(mapped->ReadCString(3, &string));
EXPECT_EQ("", string);
ASSERT_TRUE(mapped->ReadCString(4, &string));
EXPECT_EQ("45", string);
ASSERT_TRUE(mapped->ReadCString(5, &string));
EXPECT_EQ("5", string);
ASSERT_TRUE(mapped->ReadCString(6, &string));
EXPECT_EQ("", string);
// kTestBuffers NUL terminator was not read, so these will see an
// unterminated string and fail.
EXPECT_FALSE(mapped->ReadCString(7, &string));
EXPECT_FALSE(mapped->ReadCString(8, &string));
EXPECT_FALSE(mapped->ReadCString(9, &string));
// This is out of the range of what was read, so it will fail.
EXPECT_FALSE(mapped->ReadCString(10, &string));
EXPECT_FALSE(mapped->ReadCString(11, &string));
// Read it again, this time with a length long enough to include the NUL
// terminator.
ASSERT_TRUE((mapped = memory.ReadMapped(kTestAddress, 11)));
ASSERT_TRUE(mapped->ReadCString(6, &string));
EXPECT_EQ("", string);
// These should now succeed.
ASSERT_TRUE(mapped->ReadCString(7, &string));
EXPECT_EQ("789", string);
ASSERT_TRUE(mapped->ReadCString(8, &string));
EXPECT_EQ("89", string);
ASSERT_TRUE(mapped->ReadCString(9, &string));
EXPECT_EQ("9", string);
EXPECT_TRUE(mapped->ReadCString(10, &string));
EXPECT_EQ("", string);
// These are still out of range.
EXPECT_FALSE(mapped->ReadCString(11, &string));
EXPECT_FALSE(mapped->ReadCString(12, &string));
}
} // namespace
} // namespace test
} // namespace crashpad