crashpad/util/mach/task_memory_test.cc

387 lines
14 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/mach/task_memory.h"
#include <mach/mach.h>
#include <algorithm>
#include <string>
#include "base/mac/scoped_mach_vm.h"
#include "gtest/gtest.h"
#include "util/test/mac/mach_errors.h"
namespace {
using namespace crashpad;
using namespace crashpad::test;
TEST(TaskMemory, ReadSelf) {
vm_address_t address = 0;
const vm_size_t kSize = 4 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
region[index] = (index % 256) ^ ((index >> 8) % 256);
}
TaskMemory memory(mach_task_self());
std::string result(kSize, '\0');
// Ensure that the entire region can be read.
ASSERT_TRUE(memory.Read(address, kSize, &result[0]));
EXPECT_EQ(0, memcmp(region, &result[0], kSize));
// Ensure that a read of length 0 succeeds and doesnt touch the result.
result.assign(kSize, '\0');
std::string zeroes = result;
ASSERT_TRUE(memory.Read(address, 0, &result[0]));
EXPECT_EQ(zeroes, result);
// Ensure that a read starting at an unaligned address works.
ASSERT_TRUE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_EQ(0, memcmp(region + 1, &result[0], kSize - 1));
// Ensure that a read ending at an unaligned address works.
ASSERT_TRUE(memory.Read(address, kSize - 1, &result[0]));
EXPECT_EQ(0, memcmp(region, &result[0], kSize - 1));
// Ensure that a read starting and ending at unaligned addresses works.
ASSERT_TRUE(memory.Read(address + 1, kSize - 2, &result[0]));
EXPECT_EQ(0, memcmp(region + 1, &result[0], kSize - 2));
// Ensure that a read of exactly one page works.
ASSERT_TRUE(memory.Read(address + PAGE_SIZE, PAGE_SIZE, &result[0]));
EXPECT_EQ(0, memcmp(region + PAGE_SIZE, &result[0], PAGE_SIZE));
// Ensure that a read of a single byte works.
ASSERT_TRUE(memory.Read(address + 2, 1, &result[0]));
EXPECT_EQ(region[2], result[0]);
// Ensure that a read of length zero works and doesnt touch the data.
result[0] = 'M';
ASSERT_TRUE(memory.Read(address + 3, 0, &result[0]));
EXPECT_EQ('M', result[0]);
}
TEST(TaskMemory, ReadSelfUnmapped) {
vm_address_t address = 0;
const vm_size_t kSize = 2 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
region[index] = (index % 255) + 1;
}
kr = vm_protect(
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_protect");
TaskMemory memory(mach_task_self());
std::string result(kSize, '\0');
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
// Repeat the test with an unmapped page instead of an unreadable one. This
// portion of the test may be flaky in the presence of other threads, if
// another thread maps something in the region that is deallocated here.
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_deallocate");
vm_owner.reset(address, PAGE_SIZE);
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
}
// This function consolidates the cast from a char* to mach_vm_address_t in one
// location when reading from the current task.
bool ReadCStringSelf(TaskMemory* memory,
const char* pointer,
std::string* result) {
return memory->ReadCString(reinterpret_cast<mach_vm_address_t>(pointer),
result);
}
TEST(TaskMemory, ReadCStringSelf) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharEmpty, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
const char kConstCharShort[] = "A short const char[]";
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharShort, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
static const char kStaticConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharEmpty, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
static const char kStaticConstCharShort[] = "A short static const char[]";
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharShort, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
std::string string_short("A short std::string in a function");
ASSERT_TRUE(ReadCStringSelf(&memory, &string_short[0], &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
std::string string_long;
const size_t kStringLongSize = 4 * PAGE_SIZE;
for (size_t index = 0; index < kStringLongSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
string_long.append(1, (index % 255) + 1);
}
ASSERT_EQ(kStringLongSize, string_long.size());
ASSERT_TRUE(ReadCStringSelf(&memory, &string_long[0], &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
}
TEST(TaskMemory, ReadCStringSelfUnmapped) {
vm_address_t address = 0;
const vm_size_t kSize = 2 * PAGE_SIZE;
kern_return_t kr =
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_allocate");
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
char* region = reinterpret_cast<char*>(address);
for (size_t index = 0; index < kSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
region[index] = (index % 255) + 1;
}
kr = vm_protect(
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_protect");
TaskMemory memory(mach_task_self());
std::string result;
EXPECT_FALSE(memory.ReadCString(address, &result));
// Make sure that if the string is NUL-terminated within the mapped memory
// region, it can be read properly.
char terminator_or_not = '\0';
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
ASSERT_TRUE(memory.ReadCString(address, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(PAGE_SIZE - 1u, result.size());
EXPECT_EQ(region, result);
// Repeat the test with an unmapped page instead of an unreadable one. This
// portion of the test may be flaky in the presence of other threads, if
// another thread maps something in the region that is deallocated here.
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
ASSERT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "vm_deallocate");
vm_owner.reset(address, PAGE_SIZE);
EXPECT_FALSE(memory.ReadCString(address, &result));
// Clear the result before testing that the string can be read. This makes
// sure that the result is actually filled in, because it already contains the
// expected value from the tests above.
result.clear();
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
ASSERT_TRUE(memory.ReadCString(address, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(PAGE_SIZE - 1u, result.size());
EXPECT_EQ(region, result);
}
// This function consolidates the cast from a char* to mach_vm_address_t in one
// location when reading from the current task.
bool ReadCStringSizeLimitedSelf(TaskMemory* memory,
const char* pointer,
size_t size,
std::string* result) {
return memory->ReadCStringSizeLimited(
reinterpret_cast<mach_vm_address_t>(pointer), size, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharEmpty) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharEmpty, arraysize(kConstCharEmpty), &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharEmpty, arraysize(kConstCharEmpty) + 1, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory, kConstCharEmpty, 0, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kConstCharEmpty, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharShort) {
TaskMemory memory(mach_task_self());
std::string result;
const char kConstCharShort[] = "A short const char[]";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort), &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort) + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kConstCharShort, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, kConstCharShort, arraysize(kConstCharShort) - 1, &result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharEmpty) {
TaskMemory memory(mach_task_self());
std::string result;
static const char kStaticConstCharEmpty[] = "";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharEmpty,
arraysize(kStaticConstCharEmpty),
&result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharEmpty,
arraysize(kStaticConstCharEmpty) + 1,
&result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
result.clear();
ASSERT_TRUE(
ReadCStringSizeLimitedSelf(&memory, kStaticConstCharEmpty, 0, &result));
EXPECT_TRUE(result.empty());
EXPECT_EQ(kStaticConstCharEmpty, result);
}
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharShort) {
TaskMemory memory(mach_task_self());
std::string result;
static const char kStaticConstCharShort[] = "A short static const char[]";
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort),
&result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort) + 1,
&result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStaticConstCharShort, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(&memory,
kStaticConstCharShort,
arraysize(kStaticConstCharShort) - 1,
&result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StringShort) {
TaskMemory memory(mach_task_self());
std::string result;
std::string string_short("A short std::string in a function");
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size() + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size() + 2, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(string_short, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, &string_short[0], string_short.size(), &result));
}
TEST(TaskMemory, ReadCStringSizeLimited_StringLong) {
TaskMemory memory(mach_task_self());
std::string result;
std::string string_long;
const size_t kStringLongSize = 4 * PAGE_SIZE;
for (size_t index = 0; index < kStringLongSize; ++index) {
// Dont include any NUL bytes, because ReadCString stops when it encounters
// a NUL.
string_long.append(1, (index % 255) + 1);
}
ASSERT_EQ(kStringLongSize, string_long.size());
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size() + 1, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
result.clear();
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size() + 2, &result));
EXPECT_FALSE(result.empty());
EXPECT_EQ(kStringLongSize, result.size());
EXPECT_EQ(string_long, result);
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
&memory, &string_long[0], string_long.size(), &result));
}
} // namespace