// sigslot.h: Signal/Slot classes // // Written by Sarah Thompson (sarah@telergy.com) 2002. // // License: Public domain. You are free to use this code however you like, with the proviso that // the author takes on no responsibility or liability for any use. // // QUICK DOCUMENTATION // // (see also the full documentation at http://sigslot.sourceforge.net/) // // #define switches // SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables // all of the thread safety support on platforms where it is // available. // // SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than // gcc on a platform that supports Posix threads. (When using gcc, // this is the default - use SIGSLOT_PURE_ISO to disable this if // necessary) // // SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global. // Otherwise, the default is single_threaded. #define this yourself to // override the default. In pure ISO mode, anything other than // single_threaded will cause a compiler error. // // PLATFORM NOTES // // Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream // compilers do this by default, but you may need to define it // yourself if your build environment is less standard. This causes // the Win32 thread support to be compiled in and used automatically. // // Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads // available, so they are used automatically. You can override this // (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using // something other than gcc but still want to use Posix threads, you // need to #define SIGSLOT_USE_POSIX_THREADS. // // ISO C++ - If none of the supported platforms are detected, or if // SIGSLOT_PURE_ISO is defined, all multithreading support is turned off, // along with any code that might cause a pure ISO C++ environment to // complain. Before you ask, gcc -ansi -pedantic won't compile this // library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of // errors that aren't really there. If you feel like investigating this, // please contact the author. // // // THREADING MODES // // single_threaded - Your program is assumed to be single threaded from the point of view // of signal/slot usage (i.e. all objects using signals and slots are // created and destroyed from a single thread). Behaviour if objects are // destroyed concurrently is undefined (i.e. you'll get the occasional // segmentation fault/memory exception). // // multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and // slots can be safely created and destroyed from any thread, even when // connections exist. In multi_threaded_global mode, this is achieved by a // single global mutex (actually a critical section on Windows because they // are faster). This option uses less OS resources, but results in more // opportunities for contention, possibly resulting in more context switches // than are strictly necessary. // // multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global, // except that each signal, and each object that inherits has_slots, all // have their own mutex/critical section. In practice, this means that // mutex collisions (and hence context switches) only happen if they are // absolutely essential. However, on some platforms, creating a lot of // mutexes can slow down the whole OS, so use this option with care. // // USING THE LIBRARY // // See the full documentation at http://sigslot.sourceforge.net/ // // #ifndef __SIGSLOT_H__ #define __SIGSLOT_H__ #include #include #if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS)) # define _SIGSLOT_SINGLE_THREADED #elif defined(WIN32) # define _SIGSLOT_HAS_WIN32_THREADS # include #elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS) # define _SIGSLOT_HAS_POSIX_THREADS # include #else # define _SIGSLOT_SINGLE_THREADED #endif #ifndef SIGSLOT_DEFAULT_MT_POLICY # ifdef _SIGSLOT_SINGLE_THREADED # define SIGSLOT_DEFAULT_MT_POLICY single_threaded # else # define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local # endif #endif #ifndef SIGSLOT_EMIT # ifdef QT_VERSION # define SIGSLOT_EMIT broadcast # else # define SIGSLOT_EMIT emit # endif #endif namespace sigslot { class single_threaded { public: single_threaded() {} virtual ~single_threaded() {} virtual void lock() {} virtual void unlock() {} }; #ifdef _SIGSLOT_HAS_WIN32_THREADS // The multi threading policies only get compiled in if they are enabled. class multi_threaded_global { public: multi_threaded_global() { static bool isinitialised = false; if(!isinitialised) { InitializeCriticalSection(get_critsec()); isinitialised = true; } } multi_threaded_global(const multi_threaded_global&) {} virtual ~multi_threaded_global() {} virtual void lock() { EnterCriticalSection(get_critsec()); } virtual void unlock() { LeaveCriticalSection(get_critsec()); } private: CRITICAL_SECTION* get_critsec() { static CRITICAL_SECTION g_critsec; return &g_critsec; } }; class multi_threaded_local { public: multi_threaded_local() { InitializeCriticalSection(&m_critsec); } multi_threaded_local(const multi_threaded_local&) { InitializeCriticalSection(&m_critsec); } virtual ~multi_threaded_local() { DeleteCriticalSection(&m_critsec); } virtual void lock() { EnterCriticalSection(&m_critsec); } virtual void unlock() { LeaveCriticalSection(&m_critsec); } private: CRITICAL_SECTION m_critsec; }; #endif // _SIGSLOT_HAS_WIN32_THREADS #ifdef _SIGSLOT_HAS_POSIX_THREADS // The multi threading policies only get compiled in if they are enabled. class multi_threaded_global { public: multi_threaded_global() { pthread_mutex_init(get_mutex(), NULL); } multi_threaded_global(const multi_threaded_global&) {} virtual ~multi_threaded_global() {} virtual void lock() { pthread_mutex_lock(get_mutex()); } virtual void unlock() { pthread_mutex_unlock(get_mutex()); } private: pthread_mutex_t* get_mutex() { static pthread_mutex_t g_mutex; return &g_mutex; } }; class multi_threaded_local { public: multi_threaded_local() { pthread_mutex_init(&m_mutex, NULL); } multi_threaded_local(const multi_threaded_local&) { pthread_mutex_init(&m_mutex, NULL); } virtual ~multi_threaded_local() { pthread_mutex_destroy(&m_mutex); } virtual void lock() { pthread_mutex_lock(&m_mutex); } virtual void unlock() { pthread_mutex_unlock(&m_mutex); } private: pthread_mutex_t m_mutex; }; #endif // _SIGSLOT_HAS_POSIX_THREADS template class lock_block { public: mt_policy *m_mutex; lock_block(mt_policy *mtx) : m_mutex(mtx) { m_mutex->lock(); } ~lock_block() { m_mutex->unlock(); } }; template class has_slots; template class _connection_base0 { public: virtual ~_connection_base0() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT() = 0; virtual _connection_base0* clone() = 0; virtual _connection_base0* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base1 { public: virtual ~_connection_base1() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type) = 0; virtual _connection_base1* clone() = 0; virtual _connection_base1* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base2 { public: virtual ~_connection_base2() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type) = 0; virtual _connection_base2* clone() = 0; virtual _connection_base2* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base3 { public: virtual ~_connection_base3() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type) = 0; virtual _connection_base3* clone() = 0; virtual _connection_base3* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base4 { public: virtual ~_connection_base4() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type, arg4_type) = 0; virtual _connection_base4* clone() = 0; virtual _connection_base4* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base5 { public: virtual ~_connection_base5() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type) = 0; virtual _connection_base5* clone() = 0; virtual _connection_base5* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base6 { public: virtual ~_connection_base6() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type) = 0; virtual _connection_base6* clone() = 0; virtual _connection_base6* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base7 { public: virtual ~_connection_base7() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type) = 0; virtual _connection_base7* clone() = 0; virtual _connection_base7* duplicate(has_slots* pnewdest) = 0; }; template class _connection_base8 { public: virtual ~_connection_base8() {} virtual has_slots* getdest() const = 0; virtual void SIGSLOT_EMIT(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type) = 0; virtual _connection_base8* clone() = 0; virtual _connection_base8* duplicate(has_slots* pnewdest) = 0; }; template class _signal_base : public mt_policy { public: virtual void slot_disconnect(has_slots* pslot) = 0; virtual void slot_duplicate(const has_slots* poldslot, has_slots* pnewslot) = 0; }; // Implements common functionality of signalN classes. signalN classes // derive from this class. template class _signal_base_middle: public _signal_base { public: typedef T connections_list; typedef typename connections_list::iterator iterator; typedef typename connections_list::const_iterator const_iterator; _signal_base_middle() {} _signal_base_middle(const _signal_base_middle &s) : _signal_base(s) { lock_block lock(this); const_iterator it = s.m_connected_slots.begin(); const_iterator itEnd = s.m_connected_slots.end(); while(it != itEnd) { (*it)->getdest()->signal_connect(this); m_connected_slots.push_back((*it)->clone()); ++it; } } virtual ~_signal_base_middle() {} void disconnect_all() { lock_block lock(this); const_iterator it = m_connected_slots.begin(); const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { (*it)->getdest()->signal_disconnect(this); delete *it; ++it; } m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end()); } bool is_empty() { lock_block lock(this); const_iterator it = m_connected_slots.begin(); const_iterator itEnd = m_connected_slots.end(); return it == itEnd; } #ifdef _DEBUG bool connected(has_slots* pclass) { lock_block lock(this); const_iterator itNext, it = m_connected_slots.begin(); const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; if ((*it)->getdest() == pclass) return true; it = itNext; } return false; } #endif void disconnect(has_slots* pclass) { lock_block lock(this); iterator it = m_connected_slots.begin(); iterator itEnd = m_connected_slots.end(); while(it != itEnd) { if((*it)->getdest() == pclass) { delete *it; m_connected_slots.erase(it); pclass->signal_disconnect(this); return; } ++it; } } void slot_disconnect(has_slots* pslot) { lock_block lock(this); iterator it = m_connected_slots.begin(); iterator itEnd = m_connected_slots.end(); while(it != itEnd) { iterator itNext = it; ++itNext; if((*it)->getdest() == pslot) { delete *it; m_connected_slots.erase(it); } it = itNext; } } void slot_duplicate(const has_slots* oldtarget, has_slots* newtarget) { lock_block lock(this); iterator it = m_connected_slots.begin(); iterator itEnd = m_connected_slots.end(); while(it != itEnd) { if((*it)->getdest() == oldtarget) { m_connected_slots.push_back((*it)->duplicate(newtarget)); } ++it; } } protected: connections_list m_connected_slots; }; template class has_slots : public mt_policy { private: typedef typename std::set<_signal_base *> sender_set; typedef typename sender_set::const_iterator const_iterator; public: has_slots() {} has_slots(const has_slots& hs) : mt_policy(hs) { lock_block lock(this); const_iterator it = hs.m_senders.begin(); const_iterator itEnd = hs.m_senders.end(); while(it != itEnd) { (*it)->slot_duplicate(&hs, this); m_senders.insert(*it); ++it; } } void signal_connect(_signal_base* sender) { lock_block lock(this); m_senders.insert(sender); } void signal_disconnect(_signal_base* sender) { lock_block lock(this); m_senders.erase(sender); } virtual ~has_slots() { disconnect_all(); } void disconnect_all() { lock_block lock(this); const_iterator it = m_senders.begin(); const_iterator itEnd = m_senders.end(); while(it != itEnd) { (*it)->slot_disconnect(this); ++it; } m_senders.erase(m_senders.begin(), m_senders.end()); } private: sender_set m_senders; }; template class _connection0 : public _connection_base0 { public: _connection0() { m_pobject = NULL; m_pmemfun = NULL; } _connection0(dest_type* pobject, void (dest_type::*pmemfun)()) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection0() {} virtual _connection_base0* clone() { return new _connection0(*this); } virtual _connection_base0* duplicate(has_slots* pnewdest) { return new _connection0((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT() { (m_pobject->*m_pmemfun)(); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(); }; template class _connection1 : public _connection_base1 { public: _connection1() { m_pobject = NULL; m_pmemfun = NULL; } _connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection1() {} virtual _connection_base1* clone() { return new _connection1(*this); } virtual _connection_base1* duplicate(has_slots* pnewdest) { return new _connection1((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1) { (m_pobject->*m_pmemfun)(a1); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type); }; template class _connection2 : public _connection_base2 { public: _connection2() { m_pobject = NULL; m_pmemfun = NULL; } _connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection2() {} virtual _connection_base2* clone() { return new _connection2(*this); } virtual _connection_base2* duplicate(has_slots* pnewdest) { return new _connection2((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2) { (m_pobject->*m_pmemfun)(a1, a2); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type); }; template class _connection3 : public _connection_base3 { public: _connection3() { m_pobject = NULL; m_pmemfun = NULL; } _connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection3() {} virtual _connection_base3* clone() { return new _connection3(*this); } virtual _connection_base3* duplicate(has_slots* pnewdest) { return new _connection3((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3) { (m_pobject->*m_pmemfun)(a1, a2, a3); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type); }; template class _connection4 : public _connection_base4 { public: _connection4() { m_pobject = NULL; m_pmemfun = NULL; } _connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection4() {} virtual _connection_base4* clone() { return new _connection4(*this); } virtual _connection_base4* duplicate(has_slots* pnewdest) { return new _connection4((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4) { (m_pobject->*m_pmemfun)(a1, a2, a3, a4); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type); }; template class _connection5 : public _connection_base5 { public: _connection5() { m_pobject = NULL; m_pmemfun = NULL; } _connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection5() {} virtual _connection_base5* clone() { return new _connection5(*this); } virtual _connection_base5* duplicate(has_slots* pnewdest) { return new _connection5((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5) { (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type); }; template class _connection6 : public _connection_base6 { public: _connection6() { m_pobject = NULL; m_pmemfun = NULL; } _connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection6() {} virtual _connection_base6* clone() { return new _connection6(*this); } virtual _connection_base6* duplicate(has_slots* pnewdest) { return new _connection6((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6) { (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type); }; template class _connection7 : public _connection_base7 { public: _connection7() { m_pobject = NULL; m_pmemfun = NULL; } _connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection7() {} virtual _connection_base7* clone() { return new _connection7(*this); } virtual _connection_base7* duplicate(has_slots* pnewdest) { return new _connection7((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7) { (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type); }; template class _connection8 : public _connection_base8 { public: _connection8() { m_pobject = NULL; m_pmemfun = NULL; } _connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type)) { m_pobject = pobject; m_pmemfun = pmemfun; } virtual ~_connection8() {} virtual _connection_base8* clone() { return new _connection8(*this); } virtual _connection_base8* duplicate(has_slots* pnewdest) { return new _connection8((dest_type *)pnewdest, m_pmemfun); } virtual void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8) { (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8); } virtual has_slots* getdest() const { return m_pobject; } private: dest_type* m_pobject; void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type); }; template class signal0 : public _signal_base_middle*>, mt_policy> { public: typedef signal0 this_type; typedef std::list<_connection_base0*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal0() {} signal0(const this_type& s) : base_type(s) {} ~signal0() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)()) { lock_block lock(this); _connection0* conn = new _connection0(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT() { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(); it = itNext; } } void operator()() { SIGSLOT_EMIT(); } }; template class signal1 : public _signal_base_middle*>, mt_policy> { public: typedef signal1 this_type; typedef std::list<_connection_base1*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal1() {} signal1(const this_type& s) : base_type(s) {} ~signal1() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type)) { lock_block lock(this); _connection1* conn = new _connection1(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1); it = itNext; } } void operator()(arg1_type a1) { SIGSLOT_EMIT(a1); } }; template class signal2 : public _signal_base_middle*>, mt_policy> { public: typedef signal2 this_type; typedef std::list<_connection_base2*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal2() {} signal2(const this_type& s) : base_type(s) {} ~signal2() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type)) { lock_block lock(this); _connection2* conn = new _connection2(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2); it = itNext; } } void operator()(arg1_type a1, arg2_type a2) { SIGSLOT_EMIT(a1, a2); } }; template class signal3 : public _signal_base_middle*>, mt_policy> { public: typedef signal3 this_type; typedef std::list<_connection_base3*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal3() {} signal3(const this_type& s) : base_type(s) {} ~signal3() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type)) { lock_block lock(this); _connection3* conn = new _connection3(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3) { SIGSLOT_EMIT(a1, a2, a3); } }; template class signal4 : public _signal_base_middle*>, mt_policy> { public: typedef signal4 this_type; typedef std::list<_connection_base4*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal4() {} signal4(const this_type& s) : base_type(s) {} ~signal4() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type)) { lock_block lock(this); _connection4* conn = new _connection4(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3, a4); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4) { SIGSLOT_EMIT(a1, a2, a3, a4); } }; template class signal5 : public _signal_base_middle*>, mt_policy> { public: typedef signal5 this_type; typedef std::list<_connection_base5*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal5() {} signal5(const this_type& s) : base_type(s) {} ~signal5() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type)) { lock_block lock(this); _connection5* conn = new _connection5(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3, a4, a5); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5) { SIGSLOT_EMIT(a1, a2, a3, a4, a5); } }; template class signal6 : public _signal_base_middle*>, mt_policy> { public: typedef signal6 this_type; typedef std::list<_connection_base6*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal6() {} signal6(const this_type& s) : base_type(s) {} ~signal6() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type)) { lock_block lock(this); _connection6* conn = new _connection6(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6) { SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6); } }; template class signal7 : public _signal_base_middle*>, mt_policy> { public: typedef signal7 this_type; typedef std::list<_connection_base7*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal7() {} signal7(const this_type& s) : base_type(s) {} ~signal7() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type)) { lock_block lock(this); _connection7* conn = new _connection7(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6, a7); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7) { SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6, a7); } }; template class signal8 : public _signal_base_middle*>, mt_policy> { public: typedef signal8 this_type; typedef std::list<_connection_base8*> connections_list; typedef _signal_base_middle base_type; using base_type::m_connected_slots; signal8() {} signal8(const this_type& s) : base_type(s) {} ~signal8() { base_type::disconnect_all(); } template void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type)) { lock_block lock(this); _connection8* conn = new _connection8(pclass, pmemfun); m_connected_slots.push_back(conn); pclass->signal_connect(this); } void SIGSLOT_EMIT(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8) { lock_block lock(this); typename connections_list::const_iterator itNext, it = m_connected_slots.begin(); typename connections_list::const_iterator itEnd = m_connected_slots.end(); while(it != itEnd) { itNext = it; ++itNext; (*it)->SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6, a7, a8); it = itNext; } } void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4, arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8) { SIGSLOT_EMIT(a1, a2, a3, a4, a5, a6, a7, a8); } }; namespace impl { struct empty {}; } // namespace impl // signal can be used instead of the numbered signalN classes. // For example: // // sigslot::signal signal; // // instead of // // sigslot::signal2 signal; template struct signal; template<> struct signal<>: public signal0<> {}; template struct signal: public signal1 {}; template struct signal: public signal2 {}; template struct signal: public signal3 {}; template struct signal: public signal4 {}; template struct signal: public signal5 {}; template struct signal: public signal6 {}; template struct signal: public signal7 {}; template struct signal: public signal8 {}; // Some convenience methods for signal handling. template struct has_signals { virtual ~has_signals() {} // Connect a signal to a slot on the specified destination object. template static inline void connect(Signal &signal, Dst *dst, Sig memfun) { signal.connect(dst, memfun); } // Connect a signal to a slot on 'this'. template inline void connect(Signal &signal, Sig memfun) { Derived* dst = static_cast(this); connect(signal, dst, memfun); } }; }; // namespace sigslot #endif // __SIGSLOT_H__