199 lines
7.2 KiB
C++
199 lines
7.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
|
#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
/** \internal Low-level conjugate gradient algorithm for least-square problems
|
|
* \param mat The matrix A
|
|
* \param rhs The right hand side vector b
|
|
* \param x On input and initial solution, on output the computed solution.
|
|
* \param precond A preconditioner being able to efficiently solve for an
|
|
* approximation of A'Ax=b (regardless of b)
|
|
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
|
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
|
*/
|
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
|
EIGEN_DONT_INLINE
|
|
void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|
const Preconditioner& precond, Index& iters,
|
|
typename Dest::RealScalar& tol_error)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
typedef typename Dest::RealScalar RealScalar;
|
|
typedef typename Dest::Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
|
|
|
RealScalar tol = tol_error;
|
|
Index maxIters = iters;
|
|
|
|
Index m = mat.rows(), n = mat.cols();
|
|
|
|
VectorType residual = rhs - mat * x;
|
|
VectorType normal_residual = mat.adjoint() * residual;
|
|
|
|
RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm();
|
|
if(rhsNorm2 == 0)
|
|
{
|
|
x.setZero();
|
|
iters = 0;
|
|
tol_error = 0;
|
|
return;
|
|
}
|
|
RealScalar threshold = tol*tol*rhsNorm2;
|
|
RealScalar residualNorm2 = normal_residual.squaredNorm();
|
|
if (residualNorm2 < threshold)
|
|
{
|
|
iters = 0;
|
|
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
|
return;
|
|
}
|
|
|
|
VectorType p(n);
|
|
p = precond.solve(normal_residual); // initial search direction
|
|
|
|
VectorType z(n), tmp(m);
|
|
RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
|
|
Index i = 0;
|
|
while(i < maxIters)
|
|
{
|
|
tmp.noalias() = mat * p;
|
|
|
|
Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
|
|
x += alpha * p; // update solution
|
|
residual -= alpha * tmp; // update residual
|
|
normal_residual = mat.adjoint() * residual; // update residual of the normal equation
|
|
|
|
residualNorm2 = normal_residual.squaredNorm();
|
|
if(residualNorm2 < threshold)
|
|
break;
|
|
|
|
z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
|
|
|
|
RealScalar absOld = absNew;
|
|
absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
|
|
RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
|
|
p = z + beta * p; // update search direction
|
|
i++;
|
|
}
|
|
tol_error = sqrt(residualNorm2 / rhsNorm2);
|
|
iters = i;
|
|
}
|
|
|
|
}
|
|
|
|
template< typename _MatrixType,
|
|
typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> >
|
|
class LeastSquaresConjugateGradient;
|
|
|
|
namespace internal {
|
|
|
|
template< typename _MatrixType, typename _Preconditioner>
|
|
struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
|
{
|
|
typedef _MatrixType MatrixType;
|
|
typedef _Preconditioner Preconditioner;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A conjugate gradient solver for sparse (or dense) least-square problems
|
|
*
|
|
* This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm.
|
|
* The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability.
|
|
* Otherwise, the SparseLU or SparseQR classes might be preferable.
|
|
* The matrix A and the vectors x and b can be either dense or sparse.
|
|
*
|
|
* \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
|
|
* \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
|
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
|
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
|
*
|
|
* This class can be used as the direct solver classes. Here is a typical usage example:
|
|
\code
|
|
int m=1000000, n = 10000;
|
|
VectorXd x(n), b(m);
|
|
SparseMatrix<double> A(m,n);
|
|
// fill A and b
|
|
LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
|
|
lscg.compute(A);
|
|
x = lscg.solve(b);
|
|
std::cout << "#iterations: " << lscg.iterations() << std::endl;
|
|
std::cout << "estimated error: " << lscg.error() << std::endl;
|
|
// update b, and solve again
|
|
x = lscg.solve(b);
|
|
\endcode
|
|
*
|
|
* By default the iterations start with x=0 as an initial guess of the solution.
|
|
* One can control the start using the solveWithGuess() method.
|
|
*
|
|
* \sa class ConjugateGradient, SparseLU, SparseQR
|
|
*/
|
|
template< typename _MatrixType, typename _Preconditioner>
|
|
class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> >
|
|
{
|
|
typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base;
|
|
using Base::matrix;
|
|
using Base::m_error;
|
|
using Base::m_iterations;
|
|
using Base::m_info;
|
|
using Base::m_isInitialized;
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef _Preconditioner Preconditioner;
|
|
|
|
public:
|
|
|
|
/** Default constructor. */
|
|
LeastSquaresConjugateGradient() : Base() {}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
|
|
|
|
~LeastSquaresConjugateGradient() {}
|
|
|
|
/** \internal */
|
|
template<typename Rhs,typename Dest>
|
|
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
|
|
{
|
|
m_iterations = Base::maxIterations();
|
|
m_error = Base::m_tolerance;
|
|
|
|
internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error);
|
|
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
|
}
|
|
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
|