sled/3party/rxcpp/schedulers/rx-test.hpp
2024-03-14 20:50:17 +08:00

618 lines
19 KiB
C++

// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_TEST_HPP)
#define RXCPP_RX_SCHEDULER_TEST_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
namespace detail {
class test_type : public scheduler_interface
{
public:
typedef scheduler_interface::clock_type clock_type;
struct test_type_state : public virtual_time<long, long>
{
typedef virtual_time<long, long> base;
using base::schedule_absolute;
using base::schedule_relative;
clock_type::time_point now() const {
return to_time_point(clock_now);
}
virtual void schedule_absolute(long when, const schedulable& a) const
{
if (when <= base::clock_now)
when = base::clock_now + 1;
return base::schedule_absolute(when, a);
}
virtual long add(long absolute, long relative) const
{
return absolute + relative;
}
virtual clock_type::time_point to_time_point(long absolute) const
{
return clock_type::time_point(std::chrono::milliseconds(absolute));
}
virtual long to_relative(clock_type::duration d) const
{
return static_cast<long>(std::chrono::duration_cast<std::chrono::milliseconds>(d).count());
}
};
private:
mutable std::shared_ptr<test_type_state> state;
public:
struct test_type_worker : public worker_interface
{
mutable std::shared_ptr<test_type_state> state;
typedef test_type_state::absolute absolute;
typedef test_type_state::relative relative;
test_type_worker(std::shared_ptr<test_type_state> st)
: state(std::move(st))
{
}
virtual clock_type::time_point now() const {
return state->now();
}
virtual void schedule(const schedulable& scbl) const {
state->schedule_absolute(state->clock(), scbl);
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
state->schedule_relative(state->to_relative(when - now()), scbl);
}
void schedule_absolute(absolute when, const schedulable& scbl) const {
state->schedule_absolute(when, scbl);
}
void schedule_relative(relative when, const schedulable& scbl) const {
state->schedule_relative(when, scbl);
}
bool is_enabled() const {return state->is_enabled();}
absolute clock() const {return state->clock();}
void start() const
{
state->start();
}
void stop() const
{
state->stop();
}
void advance_to(absolute time) const
{
state->advance_to(time);
}
void advance_by(relative time) const
{
state->advance_by(time);
}
void sleep(relative time) const
{
state->sleep(time);
}
template<class T>
subscriber<T, rxt::testable_observer<T>> make_subscriber() const;
};
public:
test_type()
: state(std::make_shared<test_type_state>())
{
}
virtual clock_type::time_point now() const {
return state->now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(cs, std::make_shared<test_type_worker>(state));
}
bool is_enabled() const {return state->is_enabled();}
long clock() {
return state->clock();
}
clock_type::time_point to_time_point(long absolute) const {
return state->to_time_point(absolute);
}
std::shared_ptr<test_type_worker> create_test_type_worker_interface() const {
return std::make_shared<test_type_worker>(state);
}
template<class T>
rxt::testable_observable<T> make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const;
template<class T>
rxt::testable_observable<T> make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const;
};
template<class T>
class mock_observer
: public rxt::detail::test_subject_base<T>
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
public:
explicit mock_observer(std::shared_ptr<test_type::test_type_state> sc)
: sc(sc)
{
}
std::shared_ptr<test_type::test_type_state> sc;
std::vector<recorded_type> m;
virtual void on_subscribe(subscriber<T>) const {
std::terminate();
}
virtual std::vector<rxn::subscription> subscriptions() const {
std::terminate();
}
virtual std::vector<recorded_type> messages() const {
return m;
}
};
template<class T>
subscriber<T, rxt::testable_observer<T>> test_type::test_type_worker::make_subscriber() const
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
auto ts = std::make_shared<mock_observer<T>>(state);
return rxcpp::make_subscriber<T>(rxt::testable_observer<T>(ts, make_observer_dynamic<T>(
// on_next
[ts](T value)
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_next(value)));
},
// on_error
[ts](rxu::error_ptr e)
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_error(e)));
},
// on_completed
[ts]()
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_completed()));
})));
}
template<class T>
class cold_observable
: public rxt::detail::test_subject_base<T>
{
typedef cold_observable<T> this_type;
std::shared_ptr<test_type::test_type_state> sc;
typedef rxn::recorded<typename rxn::notification<T>::type> recorded_type;
mutable std::vector<recorded_type> mv;
mutable std::vector<rxn::subscription> sv;
mutable worker controller;
public:
cold_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, std::vector<recorded_type> mv)
: sc(sc)
, mv(std::move(mv))
, controller(w)
{
}
template<class Iterator>
cold_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, Iterator begin, Iterator end)
: sc(sc)
, mv(begin, end)
, controller(w)
{
}
virtual void on_subscribe(subscriber<T> o) const {
sv.push_back(rxn::subscription(sc->clock()));
auto index = sv.size() - 1;
for (auto& message : mv) {
auto n = message.value();
sc->schedule_relative(message.time(), make_schedulable(
controller,
[n, o](const schedulable&) {
if (o.is_subscribed()) {
n->accept(o);
}
}));
}
auto sharedThis = std::static_pointer_cast<const this_type>(this->shared_from_this());
o.add([sharedThis, index]() {
sharedThis->sv[index] = rxn::subscription(sharedThis->sv[index].subscribe(), sharedThis->sc->clock());
});
}
virtual std::vector<rxn::subscription> subscriptions() const {
return sv;
}
virtual std::vector<recorded_type> messages() const {
return mv;
}
};
template<class T>
rxt::testable_observable<T> test_type::make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const
{
auto co = std::make_shared<cold_observable<T>>(state, create_worker(composite_subscription()), std::move(messages));
return rxt::testable_observable<T>(co);
}
template<class T>
class hot_observable
: public rxt::detail::test_subject_base<T>
{
typedef hot_observable<T> this_type;
std::shared_ptr<test_type::test_type_state> sc;
typedef rxn::recorded<typename rxn::notification<T>::type> recorded_type;
typedef subscriber<T> observer_type;
mutable std::vector<recorded_type> mv;
mutable std::vector<rxn::subscription> sv;
mutable std::list<observer_type> observers;
mutable worker controller;
public:
hot_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, std::vector<recorded_type> mv)
: sc(sc)
, mv(mv)
, controller(w)
{
for (auto& message : mv) {
auto n = message.value();
sc->schedule_absolute(message.time(), make_schedulable(
controller,
[this, n](const schedulable&) {
auto local = this->observers;
for (auto& o : local) {
if (o.is_subscribed()) {
n->accept(o);
}
}
}));
}
}
virtual ~hot_observable() {}
virtual void on_subscribe(observer_type o) const {
auto olocation = observers.insert(observers.end(), o);
sv.push_back(rxn::subscription(sc->clock()));
auto index = sv.size() - 1;
auto sharedThis = std::static_pointer_cast<const this_type>(this->shared_from_this());
o.add([sharedThis, index, olocation]() {
sharedThis->sv[index] = rxn::subscription(sharedThis->sv[index].subscribe(), sharedThis->sc->clock());
sharedThis->observers.erase(olocation);
});
}
virtual std::vector<rxn::subscription> subscriptions() const {
return sv;
}
virtual std::vector<recorded_type> messages() const {
return mv;
}
};
template<class T>
rxt::testable_observable<T> test_type::make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const
{
auto worker = create_worker(composite_subscription());
auto shared = std::make_shared<hot_observable<T>>(state, worker, std::move(messages));
return rxt::testable_observable<T>(shared);
}
template<class F>
struct is_create_source_function
{
struct not_void {};
template<class CF>
static auto check(int) -> decltype((*(CF*)nullptr)());
template<class CF>
static not_void check(...);
static const bool value = is_observable<decltype(check<rxu::decay_t<F>>(0))>::value;
};
}
class test : public scheduler
{
std::shared_ptr<detail::test_type> tester;
public:
explicit test(std::shared_ptr<detail::test_type> t)
: scheduler(std::static_pointer_cast<scheduler_interface>(t))
, tester(t)
{
}
typedef detail::test_type::clock_type clock_type;
static const long created_time = 100;
static const long subscribed_time = 200;
static const long unsubscribed_time = 1000;
template<class T>
struct messages
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
typedef rxn::subscription subscription_type;
messages() {}
template<typename U>
static recorded_type next(long ticks, U value) {
return recorded_type(ticks, notification_type::on_next(std::move(value)));
}
static recorded_type completed(long ticks) {
return recorded_type(ticks, notification_type::on_completed());
}
template<typename Exception>
static recorded_type error(long ticks, Exception&& e) {
return recorded_type(ticks, notification_type::on_error(std::forward<Exception>(e)));
}
static rxn::subscription subscribe(long subscribe, long unsubscribe) {
return rxn::subscription(subscribe, unsubscribe);
}
};
class test_worker : public worker
{
std::shared_ptr<detail::test_type::test_type_worker> tester;
public:
~test_worker() {
}
explicit test_worker(composite_subscription cs, std::shared_ptr<detail::test_type::test_type_worker> t)
: worker(cs, std::static_pointer_cast<worker_interface>(t))
, tester(t)
{
}
bool is_enabled() const {return tester->is_enabled();}
long clock() const {return tester->clock();}
void schedule_absolute(long when, const schedulable& a) const {
tester->schedule_absolute(when, a);
}
void schedule_relative(long when, const schedulable& a) const {
tester->schedule_relative(when, a);
}
template<class Arg0, class... ArgN>
auto schedule_absolute(long when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
tester->schedule_absolute(when, make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...));
}
template<class Arg0, class... ArgN>
auto schedule_relative(long when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
tester->schedule_relative(when, make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...));
}
void advance_to(long time) const
{
tester->advance_to(time);
}
void advance_by(long time) const
{
tester->advance_by(time);
}
void sleep(long time) const
{
tester->sleep(time);
}
template<class T, class F>
auto start(F createSource, long created, long subscribed, long unsubscribed) const
-> subscriber<T, rxt::testable_observer<T>>
{
struct state_type
: public std::enable_shared_from_this<state_type>
{
typedef decltype(createSource()) source_type;
std::unique_ptr<source_type> source;
subscriber<T, rxt::testable_observer<T>> o;
explicit state_type(subscriber<T, rxt::testable_observer<T>> o)
: source()
, o(o)
{
}
};
auto state = std::make_shared<state_type>(this->make_subscriber<T>());
schedule_absolute(created, [createSource, state](const schedulable&) {
state->source.reset(new typename state_type::source_type(createSource()));
});
schedule_absolute(subscribed, [state](const schedulable&) {
state->source->subscribe(state->o);
});
schedule_absolute(unsubscribed, [state](const schedulable&) {
state->o.unsubscribe();
});
tester->start();
return state->o;
}
template<class T, class F>
auto start(F&& createSource, long unsubscribed) const
-> subscriber<T, rxt::testable_observer<T>>
{
return start<T>(std::forward<F>(createSource), created_time, subscribed_time, unsubscribed);
}
template<class T, class F>
auto start(F&& createSource) const
-> subscriber<T, rxt::testable_observer<T>>
{
return start<T>(std::forward<F>(createSource), created_time, subscribed_time, unsubscribed_time);
}
template<class F>
struct start_traits
{
typedef decltype((*(F*)nullptr)()) source_type;
typedef typename source_type::value_type value_type;
typedef subscriber<value_type, rxt::testable_observer<value_type>> subscriber_type;
};
template<class F>
auto start(F createSource, long created, long subscribed, long unsubscribed) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created, subscribed, unsubscribed);
}
template<class F>
auto start(F createSource, long unsubscribed) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created_time, subscribed_time, unsubscribed);
}
template<class F>
auto start(F createSource) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created_time, subscribed_time, unsubscribed_time);
}
void start() const {
tester->start();
}
template<class T>
subscriber<T, rxt::testable_observer<T>> make_subscriber() const {
return tester->make_subscriber<T>();
}
};
clock_type::time_point now() const {
return tester->now();
}
test_worker create_worker(composite_subscription cs = composite_subscription()) const {
return test_worker(cs, tester->create_test_type_worker_interface());
}
bool is_enabled() const {return tester->is_enabled();}
long clock() const {return tester->clock();}
clock_type::time_point to_time_point(long absolute) const {
return tester->to_time_point(absolute);
}
template<class T>
rxt::testable_observable<T> make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const{
return tester->make_hot_observable(std::move(messages));
}
template<class T, std::size_t size>
auto make_hot_observable(const T (&arr) [size]) const
-> decltype(tester->make_hot_observable(std::vector<T>())) {
return tester->make_hot_observable(rxu::to_vector(arr));
}
template<class T>
auto make_hot_observable(std::initializer_list<T> il) const
-> decltype(tester->make_hot_observable(std::vector<T>())) {
return tester->make_hot_observable(std::vector<T>(il));
}
template<class T>
rxt::testable_observable<T> make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const {
return tester->make_cold_observable(std::move(messages));
}
template<class T, std::size_t size>
auto make_cold_observable(const T (&arr) [size]) const
-> decltype(tester->make_cold_observable(std::vector<T>())) {
return tester->make_cold_observable(rxu::to_vector(arr));
}
template<class T>
auto make_cold_observable(std::initializer_list<T> il) const
-> decltype(tester->make_cold_observable(std::vector<T>())) {
return tester->make_cold_observable(std::vector<T>(il));
}
};
inline test make_test() {
return test(std::make_shared<detail::test_type>());
}
}
inline identity_one_worker identity_test() {
static identity_one_worker r(rxsc::make_test());
return r;
}
}
#endif