fix async redefined

This commit is contained in:
tqcq
2024-03-29 10:26:51 +08:00
parent 0c6c0cfbd1
commit cf8ee4a243
6 changed files with 245 additions and 239 deletions

View File

@ -22,226 +22,233 @@
// for pthread thread_local emulation
#if defined(EMULATE_PTHREAD_THREAD_LOCAL)
# include <pthread.h>
#include <pthread.h>
#endif
namespace async {
namespace detail {
void* aligned_alloc(std::size_t size, std::size_t align)
void *
aligned_alloc(std::size_t size, std::size_t align)
{
#ifdef _WIN32
void* ptr = _aligned_malloc(size, align);
if (!ptr)
LIBASYNC_THROW(std::bad_alloc());
return ptr;
void *ptr = _aligned_malloc(size, align);
if (!ptr) LIBASYNC_THROW(std::bad_alloc());
return ptr;
#else
void* result;
if (posix_memalign(&result, align, size))
LIBASYNC_THROW(std::bad_alloc());
else
return result;
void *result;
if (posix_memalign(&result, align, size))
LIBASYNC_THROW(std::bad_alloc());
else
return result;
#endif
}
void aligned_free(void* addr) LIBASYNC_NOEXCEPT
void
aligned_free(void *addr) LIBASYNC_NOEXCEPT
{
#ifdef _WIN32
_aligned_free(addr);
_aligned_free(addr);
#else
free(addr);
free(addr);
#endif
}
// Wait for a task to complete (for threads outside thread pool)
static void generic_wait_handler(task_wait_handle wait_task)
static void
generic_wait_handler(task_wait_handle wait_task)
{
// Create an event to wait on
task_wait_event event;
event.init();
// Create an event to wait on
task_wait_event event;
event.init();
// Create a continuation for the task we are waiting for
wait_task.on_finish([&event] {
// Just signal the thread event
event.signal(wait_type::task_finished);
});
// Create a continuation for the task we are waiting for
wait_task.on_finish([&event] {
// Just signal the thread event
event.signal(wait_type::task_finished);
});
// Wait for the event to be set
event.wait();
// Wait for the event to be set
event.wait();
}
#if defined(EMULATE_PTHREAD_THREAD_LOCAL)
// Wait handler function, per-thread, defaults to generic version
struct pthread_emulation_thread_wait_handler_key_initializer {
pthread_key_t key;
pthread_emulation_thread_wait_handler_key_initializer()
{
pthread_key_create(&key, nullptr);
}
~pthread_emulation_thread_wait_handler_key_initializer()
{
pthread_key_delete(key);
}
pthread_key_t key;
pthread_emulation_thread_wait_handler_key_initializer() { pthread_key_create(&key, nullptr); }
~pthread_emulation_thread_wait_handler_key_initializer() { pthread_key_delete(key); }
};
static pthread_key_t get_thread_wait_handler_key()
static pthread_key_t
get_thread_wait_handler_key()
{
static pthread_emulation_thread_wait_handler_key_initializer initializer;
return initializer.key;
static pthread_emulation_thread_wait_handler_key_initializer initializer;
return initializer.key;
}
#else
static THREAD_LOCAL wait_handler thread_wait_handler = generic_wait_handler;
#endif
static void set_thread_wait_handler(wait_handler handler)
static void
set_thread_wait_handler(wait_handler handler)
{
#if defined(EMULATE_PTHREAD_THREAD_LOCAL)
// we need to call this here, because the pthread initializer is lazy,
// this means the it could be null and we need to set it before trying to
// get or set it
pthread_setspecific(get_thread_wait_handler_key(), reinterpret_cast<void*>(handler));
// we need to call this here, because the pthread initializer is lazy,
// this means the it could be null and we need to set it before trying to
// get or set it
pthread_setspecific(get_thread_wait_handler_key(), reinterpret_cast<void *>(handler));
#else
thread_wait_handler = handler;
thread_wait_handler = handler;
#endif
}
static wait_handler get_thread_wait_handler()
static wait_handler
get_thread_wait_handler()
{
#if defined(EMULATE_PTHREAD_THREAD_LOCAL)
// we need to call this here, because the pthread initializer is lazy,
// this means the it could be null and we need to set it before trying to
// get or set it
wait_handler handler = (wait_handler) pthread_getspecific(get_thread_wait_handler_key());
if(handler == nullptr) {
return generic_wait_handler;
}
return handler;
// we need to call this here, because the pthread initializer is lazy,
// this means the it could be null and we need to set it before trying to
// get or set it
wait_handler handler = (wait_handler) pthread_getspecific(get_thread_wait_handler_key());
if (handler == nullptr) { return generic_wait_handler; }
return handler;
#else
return thread_wait_handler;
return thread_wait_handler;
#endif
}
// Wait for a task to complete
void wait_for_task(task_base* wait_task)
void
generic_wait_for_task(task_base *wait_task)
{
// Dispatch to the current thread's wait handler
wait_handler thread_wait_handler = get_thread_wait_handler();
thread_wait_handler(task_wait_handle(wait_task));
// Dispatch to the current thread's wait handler
wait_handler thread_wait_handler = get_thread_wait_handler();
thread_wait_handler(task_wait_handle(wait_task));
}
// The default scheduler is just a thread pool which can be configured
// using environment variables.
class default_scheduler_impl: public threadpool_scheduler {
static std::size_t get_num_threads()
{
// Get the requested number of threads from the environment
// If that fails, use the number of CPUs in the system.
std::size_t num_threads;
class default_scheduler_impl : public threadpool_scheduler {
static std::size_t get_num_threads()
{
// Get the requested number of threads from the environment
// If that fails, use the number of CPUs in the system.
std::size_t num_threads;
#ifdef _MSC_VER
char* s;
# ifdef __cplusplus_winrt
// Windows store applications do not support environment variables
s = nullptr;
# else
// MSVC gives an error when trying to use getenv, work around this
// by using _dupenv_s instead.
_dupenv_s(&s, nullptr, "LIBASYNC_NUM_THREADS");
# endif
char *s;
#ifdef __cplusplus_winrt
// Windows store applications do not support environment variables
s = nullptr;
#else
const char *s = std::getenv("LIBASYNC_NUM_THREADS");
// MSVC gives an error when trying to use getenv, work around this
// by using _dupenv_s instead.
_dupenv_s(&s, nullptr, "LIBASYNC_NUM_THREADS");
#endif
if (s)
num_threads = std::strtoul(s, nullptr, 10);
else
num_threads = hardware_concurrency();
#else
const char *s = std::getenv("LIBASYNC_NUM_THREADS");
#endif
if (s)
num_threads = std::strtoul(s, nullptr, 10);
else
num_threads = hardware_concurrency();
#if defined(_MSC_VER) && !defined(__cplusplus_winrt)
// Free the string allocated by _dupenv_s
free(s);
// Free the string allocated by _dupenv_s
free(s);
#endif
// Make sure the thread count is reasonable
if (num_threads < 1)
num_threads = 1;
return num_threads;
}
// Make sure the thread count is reasonable
if (num_threads < 1) num_threads = 1;
return num_threads;
}
public:
default_scheduler_impl()
: threadpool_scheduler(get_num_threads()) {}
default_scheduler_impl() : threadpool_scheduler(get_num_threads()) {}
};
// Thread scheduler implementation
void thread_scheduler_impl::schedule(task_run_handle t)
void
thread_scheduler_impl::schedule(task_run_handle t)
{
// A shared_ptr is used here because not all implementations of
// std::thread support move-only objects.
std::thread([](const std::shared_ptr<task_run_handle>& t) {
t->run();
}, std::make_shared<task_run_handle>(std::move(t))).detach();
// A shared_ptr is used here because not all implementations of
// std::thread support move-only objects.
std::thread([](const std::shared_ptr<task_run_handle> &t) { t->run(); },
std::make_shared<task_run_handle>(std::move(t)))
.detach();
}
} // namespace detail
}// namespace detail
threadpool_scheduler& default_threadpool_scheduler()
threadpool_scheduler &
default_threadpool_scheduler()
{
return detail::singleton<detail::default_scheduler_impl>::get_instance();
return detail::singleton<detail::default_scheduler_impl>::get_instance();
}
// FIFO scheduler implementation
struct fifo_scheduler::internal_data {
detail::fifo_queue queue;
std::mutex lock;
detail::fifo_queue queue;
std::mutex lock;
};
fifo_scheduler::fifo_scheduler()
: impl(new internal_data) {}
fifo_scheduler::fifo_scheduler() : impl(new internal_data) {}
fifo_scheduler::~fifo_scheduler() {}
void fifo_scheduler::schedule(task_run_handle t)
void
fifo_scheduler::schedule(task_run_handle t)
{
std::lock_guard<std::mutex> locked(impl->lock);
impl->queue.push(std::move(t));
}
bool fifo_scheduler::try_run_one_task()
{
task_run_handle t;
{
std::lock_guard<std::mutex> locked(impl->lock);
t = impl->queue.pop();
}
if (t) {
t.run();
return true;
}
return false;
}
void fifo_scheduler::run_all_tasks()
{
while (try_run_one_task()) {}
std::lock_guard<std::mutex> locked(impl->lock);
impl->queue.push(std::move(t));
}
std::size_t hardware_concurrency() LIBASYNC_NOEXCEPT
bool
fifo_scheduler::try_run_one_task()
{
// Cache the value because calculating it may be expensive
static std::size_t value = std::thread::hardware_concurrency();
// Always return at least 1 core
return value == 0 ? 1 : value;
task_run_handle t;
{
std::lock_guard<std::mutex> locked(impl->lock);
t = impl->queue.pop();
}
if (t) {
t.run();
return true;
}
return false;
}
wait_handler set_thread_wait_handler(wait_handler handler) LIBASYNC_NOEXCEPT
void
fifo_scheduler::run_all_tasks()
{
wait_handler old = detail::get_thread_wait_handler();
detail::set_thread_wait_handler(handler);
return old;
while (try_run_one_task()) {}
}
} // namespace async
std::size_t
hardware_concurrency() LIBASYNC_NOEXCEPT
{
// Cache the value because calculating it may be expensive
static std::size_t value = std::thread::hardware_concurrency();
// Always return at least 1 core
return value == 0 ? 1 : value;
}
wait_handler
set_thread_wait_handler(wait_handler handler) LIBASYNC_NOEXCEPT
{
wait_handler old = detail::get_thread_wait_handler();
detail::set_thread_wait_handler(handler);
return old;
}
}// namespace async
#ifndef LIBASYNC_STATIC
#if defined(__GNUC__) && !defined(_WIN32)
# pragma GCC visibility pop
#pragma GCC visibility pop
#endif
#endif