feat add rxcpp

This commit is contained in:
tqcq
2024-03-14 20:50:17 +08:00
parent 15bdc54bef
commit 90da26f0a4
124 changed files with 27992 additions and 511 deletions

View File

@@ -0,0 +1,272 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_CURRENT_THREAD_HPP)
#define RXCPP_RX_SCHEDULER_CURRENT_THREAD_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
namespace detail {
struct action_queue
{
typedef action_queue this_type;
typedef scheduler_base::clock_type clock;
typedef time_schedulable<clock::time_point> item_type;
private:
typedef schedulable_queue<item_type::time_point_type> queue_item_time;
public:
struct current_thread_queue_type {
std::shared_ptr<worker_interface> w;
recursion r;
queue_item_time q;
};
private:
#if defined(RXCPP_THREAD_LOCAL)
static current_thread_queue_type*& current_thread_queue() {
static RXCPP_THREAD_LOCAL current_thread_queue_type* q;
return q;
}
#else
static rxu::thread_local_storage<current_thread_queue_type>& current_thread_queue() {
static rxu::thread_local_storage<current_thread_queue_type> q;
return q;
}
#endif
public:
static bool owned() {
return !!current_thread_queue();
}
static const std::shared_ptr<worker_interface>& get_worker_interface() {
return current_thread_queue()->w;
}
static recursion& get_recursion() {
return current_thread_queue()->r;
}
static bool empty() {
if (!current_thread_queue()) {
std::terminate();
}
return current_thread_queue()->q.empty();
}
static queue_item_time::const_reference top() {
if (!current_thread_queue()) {
std::terminate();
}
return current_thread_queue()->q.top();
}
static void pop() {
auto& state = current_thread_queue();
if (!state) {
std::terminate();
}
state->q.pop();
if (state->q.empty()) {
// allow recursion
state->r.reset(true);
}
}
static void push(item_type item) {
auto& state = current_thread_queue();
if (!state) {
std::terminate();
}
if (!item.what.is_subscribed()) {
return;
}
state->q.push(std::move(item));
// disallow recursion
state->r.reset(false);
}
static std::shared_ptr<worker_interface> ensure(std::shared_ptr<worker_interface> w) {
if (!!current_thread_queue()) {
std::terminate();
}
// create and publish new queue
current_thread_queue() = new current_thread_queue_type();
current_thread_queue()->w = w;
return w;
}
static std::unique_ptr<current_thread_queue_type> create(std::shared_ptr<worker_interface> w) {
std::unique_ptr<current_thread_queue_type> result(new current_thread_queue_type());
result->w = std::move(w);
return result;
}
static void set(current_thread_queue_type* q) {
if (!!current_thread_queue()) {
std::terminate();
}
// publish new queue
current_thread_queue() = q;
}
static void destroy(current_thread_queue_type* q) {
delete q;
}
static void destroy() {
if (!current_thread_queue()) {
std::terminate();
}
#if defined(RXCPP_THREAD_LOCAL)
destroy(current_thread_queue());
#else
destroy(current_thread_queue().get());
#endif
current_thread_queue() = nullptr;
}
};
}
struct current_thread : public scheduler_interface
{
private:
typedef current_thread this_type;
current_thread(const this_type&);
typedef detail::action_queue queue_type;
struct derecurser : public worker_interface
{
private:
typedef current_thread this_type;
derecurser(const this_type&);
public:
derecurser()
{
}
virtual ~derecurser()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
queue_type::push(queue_type::item_type(now(), scbl));
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
queue_type::push(queue_type::item_type(when, scbl));
}
};
struct current_worker : public worker_interface
{
private:
typedef current_thread this_type;
current_worker(const this_type&);
public:
current_worker()
{
}
virtual ~current_worker()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
schedule(now(), scbl);
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
if (!scbl.is_subscribed()) {
return;
}
{
// check ownership
if (queue_type::owned()) {
// already has an owner - delegate
queue_type::get_worker_interface()->schedule(when, scbl);
return;
}
// take ownership
queue_type::ensure(std::make_shared<derecurser>());
}
// release ownership
RXCPP_UNWIND_AUTO([]{
queue_type::destroy();
});
const auto& recursor = queue_type::get_recursion().get_recurse();
std::this_thread::sleep_until(when);
if (scbl.is_subscribed()) {
scbl(recursor);
}
if (queue_type::empty()) {
return;
}
// loop until queue is empty
for (
auto next = queue_type::top().when;
(std::this_thread::sleep_until(next), true);
next = queue_type::top().when
) {
auto what = queue_type::top().what;
queue_type::pop();
if (what.is_subscribed()) {
what(recursor);
}
if (queue_type::empty()) {
break;
}
}
}
};
std::shared_ptr<current_worker> wi;
public:
current_thread()
: wi(std::make_shared<current_worker>())
{
}
virtual ~current_thread()
{
}
static bool is_schedule_required() { return !queue_type::owned(); }
inline bool is_tail_recursion_allowed() const {
return queue_type::empty();
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(std::move(cs), wi);
}
};
inline const scheduler& make_current_thread() {
static scheduler instance = make_scheduler<current_thread>();
return instance;
}
}
}
#endif

View File

@@ -0,0 +1,118 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_EVENT_LOOP_HPP)
#define RXCPP_RX_SCHEDULER_EVENT_LOOP_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
struct event_loop : public scheduler_interface
{
private:
typedef event_loop this_type;
event_loop(const this_type&);
struct loop_worker : public worker_interface
{
private:
typedef loop_worker this_type;
loop_worker(const this_type&);
typedef detail::schedulable_queue<
typename clock_type::time_point> queue_item_time;
typedef queue_item_time::item_type item_type;
composite_subscription lifetime;
worker controller;
std::shared_ptr<const scheduler_interface> alive;
public:
virtual ~loop_worker()
{
}
loop_worker(composite_subscription cs, worker w, std::shared_ptr<const scheduler_interface> alive)
: lifetime(cs)
, controller(w)
, alive(alive)
{
auto token = controller.add(cs);
cs.add([token, w](){
w.remove(token);
});
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
controller.schedule(lifetime, scbl.get_action());
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
controller.schedule(when, lifetime, scbl.get_action());
}
};
mutable thread_factory factory;
scheduler newthread;
mutable std::atomic<std::size_t> count;
composite_subscription loops_lifetime;
std::vector<worker> loops;
public:
event_loop()
: factory([](std::function<void()> start){
return std::thread(std::move(start));
})
, newthread(make_new_thread())
, count(0)
{
auto remaining = std::max(std::thread::hardware_concurrency(), unsigned(4));
while (remaining--) {
loops.push_back(newthread.create_worker(loops_lifetime));
}
}
explicit event_loop(thread_factory tf)
: factory(tf)
, newthread(make_new_thread(tf))
, count(0)
{
auto remaining = std::max(std::thread::hardware_concurrency(), unsigned(4));
while (remaining--) {
loops.push_back(newthread.create_worker(loops_lifetime));
}
}
virtual ~event_loop()
{
loops_lifetime.unsubscribe();
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(cs, std::make_shared<loop_worker>(cs, loops[++count % loops.size()], this->shared_from_this()));
}
};
inline scheduler make_event_loop() {
static scheduler instance = make_scheduler<event_loop>();
return instance;
}
inline scheduler make_event_loop(thread_factory tf) {
return make_scheduler<event_loop>(tf);
}
}
}
#endif

View File

@@ -0,0 +1,84 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_IMMEDIATE_HPP)
#define RXCPP_RX_SCHEDULER_IMMEDIATE_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
struct immediate : public scheduler_interface
{
private:
typedef immediate this_type;
immediate(const this_type&);
struct immediate_worker : public worker_interface
{
private:
typedef immediate_worker this_type;
immediate_worker(const this_type&);
public:
virtual ~immediate_worker()
{
}
immediate_worker()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
if (scbl.is_subscribed()) {
// allow recursion
recursion r(true);
scbl(r.get_recurse());
}
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
std::this_thread::sleep_until(when);
if (scbl.is_subscribed()) {
// allow recursion
recursion r(true);
scbl(r.get_recurse());
}
}
};
std::shared_ptr<immediate_worker> wi;
public:
immediate()
: wi(std::make_shared<immediate_worker>())
{
}
virtual ~immediate()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(std::move(cs), wi);
}
};
inline const scheduler& make_immediate() {
static scheduler instance = make_scheduler<immediate>();
return instance;
}
}
}
#endif

View File

@@ -0,0 +1,182 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_NEW_THREAD_HPP)
#define RXCPP_RX_SCHEDULER_NEW_THREAD_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
typedef std::function<std::thread(std::function<void()>)> thread_factory;
struct new_thread : public scheduler_interface
{
private:
typedef new_thread this_type;
new_thread(const this_type&);
struct new_worker : public worker_interface
{
private:
typedef new_worker this_type;
typedef detail::action_queue queue_type;
new_worker(const this_type&);
struct new_worker_state : public std::enable_shared_from_this<new_worker_state>
{
typedef detail::schedulable_queue<
typename clock_type::time_point> queue_item_time;
typedef queue_item_time::item_type item_type;
virtual ~new_worker_state()
{
}
explicit new_worker_state(composite_subscription cs)
: lifetime(cs)
{
}
composite_subscription lifetime;
mutable std::mutex lock;
mutable std::condition_variable wake;
mutable queue_item_time q;
std::thread worker;
recursion r;
};
std::shared_ptr<new_worker_state> state;
public:
virtual ~new_worker()
{
}
explicit new_worker(std::shared_ptr<new_worker_state> ws)
: state(ws)
{
}
new_worker(composite_subscription cs, thread_factory& tf)
: state(std::make_shared<new_worker_state>(cs))
{
auto keepAlive = state;
state->lifetime.add([keepAlive](){
std::unique_lock<std::mutex> guard(keepAlive->lock);
auto expired = std::move(keepAlive->q);
keepAlive->q = new_worker_state::queue_item_time{};
if (!keepAlive->q.empty()) std::terminate();
keepAlive->wake.notify_one();
if (keepAlive->worker.joinable() && keepAlive->worker.get_id() != std::this_thread::get_id()) {
guard.unlock();
keepAlive->worker.join();
}
else {
keepAlive->worker.detach();
}
});
state->worker = tf([keepAlive](){
// take ownership
queue_type::ensure(std::make_shared<new_worker>(keepAlive));
// release ownership
RXCPP_UNWIND_AUTO([]{
queue_type::destroy();
});
for(;;) {
std::unique_lock<std::mutex> guard(keepAlive->lock);
if (keepAlive->q.empty()) {
keepAlive->wake.wait(guard, [keepAlive](){
return !keepAlive->lifetime.is_subscribed() || !keepAlive->q.empty();
});
}
if (!keepAlive->lifetime.is_subscribed()) {
break;
}
auto& peek = keepAlive->q.top();
if (!peek.what.is_subscribed()) {
keepAlive->q.pop();
continue;
}
auto when = peek.when;
if (clock_type::now() < when) {
keepAlive->wake.wait_until(guard, when);
continue;
}
auto what = peek.what;
keepAlive->q.pop();
keepAlive->r.reset(keepAlive->q.empty());
guard.unlock();
what(keepAlive->r.get_recurse());
}
});
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
schedule(now(), scbl);
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
if (scbl.is_subscribed()) {
std::unique_lock<std::mutex> guard(state->lock);
state->q.push(new_worker_state::item_type(when, scbl));
state->r.reset(false);
}
state->wake.notify_one();
}
};
mutable thread_factory factory;
public:
new_thread()
: factory([](std::function<void()> start){
return std::thread(std::move(start));
})
{
}
explicit new_thread(thread_factory tf)
: factory(tf)
{
}
virtual ~new_thread()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(cs, std::make_shared<new_worker>(cs, factory));
}
};
inline scheduler make_new_thread() {
static scheduler instance = make_scheduler<new_thread>();
return instance;
}
inline scheduler make_new_thread(thread_factory tf) {
return make_scheduler<new_thread>(tf);
}
}
}
#endif

View File

@@ -0,0 +1,214 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_RUN_LOOP_HPP)
#define RXCPP_RX_SCHEDULER_RUN_LOOP_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
namespace detail {
struct run_loop_state : public std::enable_shared_from_this<run_loop_state>
{
typedef scheduler::clock_type clock_type;
typedef detail::schedulable_queue<
clock_type::time_point> queue_item_time;
typedef queue_item_time::item_type item_type;
typedef queue_item_time::const_reference const_reference_item_type;
virtual ~run_loop_state()
{
}
run_loop_state()
{
}
composite_subscription lifetime;
mutable std::mutex lock;
mutable queue_item_time q;
recursion r;
std::function<void(clock_type::time_point)> notify_earlier_wakeup;
};
}
struct run_loop_scheduler : public scheduler_interface
{
private:
typedef run_loop_scheduler this_type;
run_loop_scheduler(const this_type&);
struct run_loop_worker : public worker_interface
{
private:
typedef run_loop_worker this_type;
run_loop_worker(const this_type&);
public:
std::weak_ptr<detail::run_loop_state> state;
virtual ~run_loop_worker()
{
}
explicit run_loop_worker(std::weak_ptr<detail::run_loop_state> ws)
: state(ws)
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual void schedule(const schedulable& scbl) const {
schedule(now(), scbl);
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
if (scbl.is_subscribed()) {
auto st = state.lock();
std::unique_lock<std::mutex> guard(st->lock);
const bool need_earlier_wakeup_notification = st->notify_earlier_wakeup &&
(st->q.empty() || when < st->q.top().when);
st->q.push(detail::run_loop_state::item_type(when, scbl));
st->r.reset(false);
if (need_earlier_wakeup_notification) st->notify_earlier_wakeup(when);
guard.unlock(); // So we can't get attempt to recursively lock the state
}
}
};
std::weak_ptr<detail::run_loop_state> state;
public:
explicit run_loop_scheduler(std::weak_ptr<detail::run_loop_state> ws)
: state(ws)
{
}
virtual ~run_loop_scheduler()
{
}
virtual clock_type::time_point now() const {
return clock_type::now();
}
virtual worker create_worker(composite_subscription cs) const {
auto lifetime = state.lock()->lifetime;
auto token = lifetime.add(cs);
cs.add([=](){lifetime.remove(token);});
return worker(cs, create_worker_interface());
}
std::shared_ptr<worker_interface> create_worker_interface() const {
return std::make_shared<run_loop_worker>(state);
}
};
class run_loop
{
private:
typedef run_loop this_type;
// don't allow this instance to copy/move since it owns current_thread queue
// for the thread it is constructed on.
run_loop(const this_type&);
run_loop(this_type&&);
typedef detail::action_queue queue_type;
typedef detail::run_loop_state::item_type item_type;
typedef detail::run_loop_state::const_reference_item_type const_reference_item_type;
std::shared_ptr<detail::run_loop_state> state;
std::shared_ptr<run_loop_scheduler> sc;
public:
typedef scheduler::clock_type clock_type;
run_loop()
: state(std::make_shared<detail::run_loop_state>())
, sc(std::make_shared<run_loop_scheduler>(state))
{
// take ownership so that the current_thread scheduler
// uses the same queue on this thread
queue_type::ensure(sc->create_worker_interface());
}
~run_loop()
{
state->lifetime.unsubscribe();
std::unique_lock<std::mutex> guard(state->lock);
// release ownership
queue_type::destroy();
auto expired = std::move(state->q);
if (!state->q.empty()) std::terminate();
}
clock_type::time_point now() const {
return clock_type::now();
}
composite_subscription get_subscription() const {
return state->lifetime;
}
bool empty() const {
std::unique_lock<std::mutex> guard(state->lock);
return state->q.empty();
}
const_reference_item_type peek() const {
std::unique_lock<std::mutex> guard(state->lock);
return state->q.top();
}
void dispatch() const {
std::unique_lock<std::mutex> guard(state->lock);
if (state->q.empty()) {
return;
}
auto& peek = state->q.top();
if (!peek.what.is_subscribed()) {
state->q.pop();
return;
}
if (clock_type::now() < peek.when) {
return;
}
auto what = peek.what;
state->q.pop();
state->r.reset(state->q.empty());
guard.unlock();
what(state->r.get_recurse());
}
scheduler get_scheduler() const {
return make_scheduler(sc);
}
void set_notify_earlier_wakeup(std::function<void(clock_type::time_point)> const& f) {
std::unique_lock<std::mutex> guard(state->lock);
state->notify_earlier_wakeup = f;
}
};
inline scheduler make_run_loop(const run_loop& r) {
return r.get_scheduler();
}
}
}
#endif

View File

@@ -0,0 +1,52 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_SAME_WORKER_HPP)
#define RXCPP_RX_SCHEDULER_SAME_WORKER_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
struct same_worker : public scheduler_interface
{
private:
typedef same_worker this_type;
same_worker(const this_type&);
rxsc::worker controller;
public:
explicit same_worker(rxsc::worker w)
: controller(std::move(w))
{
}
virtual ~same_worker()
{
}
virtual clock_type::time_point now() const {
return controller.now();
}
virtual worker create_worker(composite_subscription cs) const {
// use different lifetime
auto inner_lifetime = controller.get_subscription();
auto token = inner_lifetime.add(cs);
cs.add([inner_lifetime, token](){inner_lifetime.remove(token);});
return worker(cs, controller);
}
};
inline scheduler make_same_worker(rxsc::worker w) {
return make_scheduler<same_worker>(std::move(w));
}
}
}
#endif

View File

@@ -0,0 +1,617 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_TEST_HPP)
#define RXCPP_RX_SCHEDULER_TEST_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
namespace detail {
class test_type : public scheduler_interface
{
public:
typedef scheduler_interface::clock_type clock_type;
struct test_type_state : public virtual_time<long, long>
{
typedef virtual_time<long, long> base;
using base::schedule_absolute;
using base::schedule_relative;
clock_type::time_point now() const {
return to_time_point(clock_now);
}
virtual void schedule_absolute(long when, const schedulable& a) const
{
if (when <= base::clock_now)
when = base::clock_now + 1;
return base::schedule_absolute(when, a);
}
virtual long add(long absolute, long relative) const
{
return absolute + relative;
}
virtual clock_type::time_point to_time_point(long absolute) const
{
return clock_type::time_point(std::chrono::milliseconds(absolute));
}
virtual long to_relative(clock_type::duration d) const
{
return static_cast<long>(std::chrono::duration_cast<std::chrono::milliseconds>(d).count());
}
};
private:
mutable std::shared_ptr<test_type_state> state;
public:
struct test_type_worker : public worker_interface
{
mutable std::shared_ptr<test_type_state> state;
typedef test_type_state::absolute absolute;
typedef test_type_state::relative relative;
test_type_worker(std::shared_ptr<test_type_state> st)
: state(std::move(st))
{
}
virtual clock_type::time_point now() const {
return state->now();
}
virtual void schedule(const schedulable& scbl) const {
state->schedule_absolute(state->clock(), scbl);
}
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const {
state->schedule_relative(state->to_relative(when - now()), scbl);
}
void schedule_absolute(absolute when, const schedulable& scbl) const {
state->schedule_absolute(when, scbl);
}
void schedule_relative(relative when, const schedulable& scbl) const {
state->schedule_relative(when, scbl);
}
bool is_enabled() const {return state->is_enabled();}
absolute clock() const {return state->clock();}
void start() const
{
state->start();
}
void stop() const
{
state->stop();
}
void advance_to(absolute time) const
{
state->advance_to(time);
}
void advance_by(relative time) const
{
state->advance_by(time);
}
void sleep(relative time) const
{
state->sleep(time);
}
template<class T>
subscriber<T, rxt::testable_observer<T>> make_subscriber() const;
};
public:
test_type()
: state(std::make_shared<test_type_state>())
{
}
virtual clock_type::time_point now() const {
return state->now();
}
virtual worker create_worker(composite_subscription cs) const {
return worker(cs, std::make_shared<test_type_worker>(state));
}
bool is_enabled() const {return state->is_enabled();}
long clock() {
return state->clock();
}
clock_type::time_point to_time_point(long absolute) const {
return state->to_time_point(absolute);
}
std::shared_ptr<test_type_worker> create_test_type_worker_interface() const {
return std::make_shared<test_type_worker>(state);
}
template<class T>
rxt::testable_observable<T> make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const;
template<class T>
rxt::testable_observable<T> make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const;
};
template<class T>
class mock_observer
: public rxt::detail::test_subject_base<T>
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
public:
explicit mock_observer(std::shared_ptr<test_type::test_type_state> sc)
: sc(sc)
{
}
std::shared_ptr<test_type::test_type_state> sc;
std::vector<recorded_type> m;
virtual void on_subscribe(subscriber<T>) const {
std::terminate();
}
virtual std::vector<rxn::subscription> subscriptions() const {
std::terminate();
}
virtual std::vector<recorded_type> messages() const {
return m;
}
};
template<class T>
subscriber<T, rxt::testable_observer<T>> test_type::test_type_worker::make_subscriber() const
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
auto ts = std::make_shared<mock_observer<T>>(state);
return rxcpp::make_subscriber<T>(rxt::testable_observer<T>(ts, make_observer_dynamic<T>(
// on_next
[ts](T value)
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_next(value)));
},
// on_error
[ts](rxu::error_ptr e)
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_error(e)));
},
// on_completed
[ts]()
{
ts->m.push_back(
recorded_type(ts->sc->clock(), notification_type::on_completed()));
})));
}
template<class T>
class cold_observable
: public rxt::detail::test_subject_base<T>
{
typedef cold_observable<T> this_type;
std::shared_ptr<test_type::test_type_state> sc;
typedef rxn::recorded<typename rxn::notification<T>::type> recorded_type;
mutable std::vector<recorded_type> mv;
mutable std::vector<rxn::subscription> sv;
mutable worker controller;
public:
cold_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, std::vector<recorded_type> mv)
: sc(sc)
, mv(std::move(mv))
, controller(w)
{
}
template<class Iterator>
cold_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, Iterator begin, Iterator end)
: sc(sc)
, mv(begin, end)
, controller(w)
{
}
virtual void on_subscribe(subscriber<T> o) const {
sv.push_back(rxn::subscription(sc->clock()));
auto index = sv.size() - 1;
for (auto& message : mv) {
auto n = message.value();
sc->schedule_relative(message.time(), make_schedulable(
controller,
[n, o](const schedulable&) {
if (o.is_subscribed()) {
n->accept(o);
}
}));
}
auto sharedThis = std::static_pointer_cast<const this_type>(this->shared_from_this());
o.add([sharedThis, index]() {
sharedThis->sv[index] = rxn::subscription(sharedThis->sv[index].subscribe(), sharedThis->sc->clock());
});
}
virtual std::vector<rxn::subscription> subscriptions() const {
return sv;
}
virtual std::vector<recorded_type> messages() const {
return mv;
}
};
template<class T>
rxt::testable_observable<T> test_type::make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const
{
auto co = std::make_shared<cold_observable<T>>(state, create_worker(composite_subscription()), std::move(messages));
return rxt::testable_observable<T>(co);
}
template<class T>
class hot_observable
: public rxt::detail::test_subject_base<T>
{
typedef hot_observable<T> this_type;
std::shared_ptr<test_type::test_type_state> sc;
typedef rxn::recorded<typename rxn::notification<T>::type> recorded_type;
typedef subscriber<T> observer_type;
mutable std::vector<recorded_type> mv;
mutable std::vector<rxn::subscription> sv;
mutable std::list<observer_type> observers;
mutable worker controller;
public:
hot_observable(std::shared_ptr<test_type::test_type_state> sc, worker w, std::vector<recorded_type> mv)
: sc(sc)
, mv(mv)
, controller(w)
{
for (auto& message : mv) {
auto n = message.value();
sc->schedule_absolute(message.time(), make_schedulable(
controller,
[this, n](const schedulable&) {
auto local = this->observers;
for (auto& o : local) {
if (o.is_subscribed()) {
n->accept(o);
}
}
}));
}
}
virtual ~hot_observable() {}
virtual void on_subscribe(observer_type o) const {
auto olocation = observers.insert(observers.end(), o);
sv.push_back(rxn::subscription(sc->clock()));
auto index = sv.size() - 1;
auto sharedThis = std::static_pointer_cast<const this_type>(this->shared_from_this());
o.add([sharedThis, index, olocation]() {
sharedThis->sv[index] = rxn::subscription(sharedThis->sv[index].subscribe(), sharedThis->sc->clock());
sharedThis->observers.erase(olocation);
});
}
virtual std::vector<rxn::subscription> subscriptions() const {
return sv;
}
virtual std::vector<recorded_type> messages() const {
return mv;
}
};
template<class T>
rxt::testable_observable<T> test_type::make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const
{
auto worker = create_worker(composite_subscription());
auto shared = std::make_shared<hot_observable<T>>(state, worker, std::move(messages));
return rxt::testable_observable<T>(shared);
}
template<class F>
struct is_create_source_function
{
struct not_void {};
template<class CF>
static auto check(int) -> decltype((*(CF*)nullptr)());
template<class CF>
static not_void check(...);
static const bool value = is_observable<decltype(check<rxu::decay_t<F>>(0))>::value;
};
}
class test : public scheduler
{
std::shared_ptr<detail::test_type> tester;
public:
explicit test(std::shared_ptr<detail::test_type> t)
: scheduler(std::static_pointer_cast<scheduler_interface>(t))
, tester(t)
{
}
typedef detail::test_type::clock_type clock_type;
static const long created_time = 100;
static const long subscribed_time = 200;
static const long unsubscribed_time = 1000;
template<class T>
struct messages
{
typedef typename rxn::notification<T> notification_type;
typedef rxn::recorded<typename notification_type::type> recorded_type;
typedef rxn::subscription subscription_type;
messages() {}
template<typename U>
static recorded_type next(long ticks, U value) {
return recorded_type(ticks, notification_type::on_next(std::move(value)));
}
static recorded_type completed(long ticks) {
return recorded_type(ticks, notification_type::on_completed());
}
template<typename Exception>
static recorded_type error(long ticks, Exception&& e) {
return recorded_type(ticks, notification_type::on_error(std::forward<Exception>(e)));
}
static rxn::subscription subscribe(long subscribe, long unsubscribe) {
return rxn::subscription(subscribe, unsubscribe);
}
};
class test_worker : public worker
{
std::shared_ptr<detail::test_type::test_type_worker> tester;
public:
~test_worker() {
}
explicit test_worker(composite_subscription cs, std::shared_ptr<detail::test_type::test_type_worker> t)
: worker(cs, std::static_pointer_cast<worker_interface>(t))
, tester(t)
{
}
bool is_enabled() const {return tester->is_enabled();}
long clock() const {return tester->clock();}
void schedule_absolute(long when, const schedulable& a) const {
tester->schedule_absolute(when, a);
}
void schedule_relative(long when, const schedulable& a) const {
tester->schedule_relative(when, a);
}
template<class Arg0, class... ArgN>
auto schedule_absolute(long when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
tester->schedule_absolute(when, make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...));
}
template<class Arg0, class... ArgN>
auto schedule_relative(long when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
tester->schedule_relative(when, make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...));
}
void advance_to(long time) const
{
tester->advance_to(time);
}
void advance_by(long time) const
{
tester->advance_by(time);
}
void sleep(long time) const
{
tester->sleep(time);
}
template<class T, class F>
auto start(F createSource, long created, long subscribed, long unsubscribed) const
-> subscriber<T, rxt::testable_observer<T>>
{
struct state_type
: public std::enable_shared_from_this<state_type>
{
typedef decltype(createSource()) source_type;
std::unique_ptr<source_type> source;
subscriber<T, rxt::testable_observer<T>> o;
explicit state_type(subscriber<T, rxt::testable_observer<T>> o)
: source()
, o(o)
{
}
};
auto state = std::make_shared<state_type>(this->make_subscriber<T>());
schedule_absolute(created, [createSource, state](const schedulable&) {
state->source.reset(new typename state_type::source_type(createSource()));
});
schedule_absolute(subscribed, [state](const schedulable&) {
state->source->subscribe(state->o);
});
schedule_absolute(unsubscribed, [state](const schedulable&) {
state->o.unsubscribe();
});
tester->start();
return state->o;
}
template<class T, class F>
auto start(F&& createSource, long unsubscribed) const
-> subscriber<T, rxt::testable_observer<T>>
{
return start<T>(std::forward<F>(createSource), created_time, subscribed_time, unsubscribed);
}
template<class T, class F>
auto start(F&& createSource) const
-> subscriber<T, rxt::testable_observer<T>>
{
return start<T>(std::forward<F>(createSource), created_time, subscribed_time, unsubscribed_time);
}
template<class F>
struct start_traits
{
typedef decltype((*(F*)nullptr)()) source_type;
typedef typename source_type::value_type value_type;
typedef subscriber<value_type, rxt::testable_observer<value_type>> subscriber_type;
};
template<class F>
auto start(F createSource, long created, long subscribed, long unsubscribed) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created, subscribed, unsubscribed);
}
template<class F>
auto start(F createSource, long unsubscribed) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created_time, subscribed_time, unsubscribed);
}
template<class F>
auto start(F createSource) const
-> typename std::enable_if<detail::is_create_source_function<F>::value, start_traits<F>>::type::subscriber_type
{
return start<rxu::value_type_t<start_traits<F>>>(std::move(createSource), created_time, subscribed_time, unsubscribed_time);
}
void start() const {
tester->start();
}
template<class T>
subscriber<T, rxt::testable_observer<T>> make_subscriber() const {
return tester->make_subscriber<T>();
}
};
clock_type::time_point now() const {
return tester->now();
}
test_worker create_worker(composite_subscription cs = composite_subscription()) const {
return test_worker(cs, tester->create_test_type_worker_interface());
}
bool is_enabled() const {return tester->is_enabled();}
long clock() const {return tester->clock();}
clock_type::time_point to_time_point(long absolute) const {
return tester->to_time_point(absolute);
}
template<class T>
rxt::testable_observable<T> make_hot_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const{
return tester->make_hot_observable(std::move(messages));
}
template<class T, std::size_t size>
auto make_hot_observable(const T (&arr) [size]) const
-> decltype(tester->make_hot_observable(std::vector<T>())) {
return tester->make_hot_observable(rxu::to_vector(arr));
}
template<class T>
auto make_hot_observable(std::initializer_list<T> il) const
-> decltype(tester->make_hot_observable(std::vector<T>())) {
return tester->make_hot_observable(std::vector<T>(il));
}
template<class T>
rxt::testable_observable<T> make_cold_observable(std::vector<rxn::recorded<std::shared_ptr<rxn::detail::notification_base<T>>>> messages) const {
return tester->make_cold_observable(std::move(messages));
}
template<class T, std::size_t size>
auto make_cold_observable(const T (&arr) [size]) const
-> decltype(tester->make_cold_observable(std::vector<T>())) {
return tester->make_cold_observable(rxu::to_vector(arr));
}
template<class T>
auto make_cold_observable(std::initializer_list<T> il) const
-> decltype(tester->make_cold_observable(std::vector<T>())) {
return tester->make_cold_observable(std::vector<T>(il));
}
};
inline test make_test() {
return test(std::make_shared<detail::test_type>());
}
}
inline identity_one_worker identity_test() {
static identity_one_worker r(rxsc::make_test());
return r;
}
}
#endif

View File

@@ -0,0 +1,230 @@
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_VIRTUAL_TIME_HPP)
#define RXCPP_RX_SCHEDULER_VIRTUAL_TIME_HPP
#include "../rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
namespace detail {
template<class Absolute, class Relative>
struct virtual_time_base : std::enable_shared_from_this<virtual_time_base<Absolute, Relative>>
{
private:
typedef virtual_time_base<Absolute, Relative> this_type;
virtual_time_base(const virtual_time_base&);
mutable bool isenabled;
public:
typedef Absolute absolute;
typedef Relative relative;
virtual ~virtual_time_base()
{
}
protected:
virtual_time_base()
: isenabled(false)
, clock_now(0)
{
}
explicit virtual_time_base(absolute initialClock)
: isenabled(false)
, clock_now(initialClock)
{
}
mutable absolute clock_now;
typedef time_schedulable<long> item_type;
virtual absolute add(absolute, relative) const =0;
virtual typename scheduler_base::clock_type::time_point to_time_point(absolute) const =0;
virtual relative to_relative(typename scheduler_base::clock_type::duration) const =0;
virtual item_type top() const =0;
virtual void pop() const =0;
virtual bool empty() const =0;
public:
virtual void schedule_absolute(absolute, const schedulable&) const =0;
virtual void schedule_relative(relative when, const schedulable& a) const {
auto at = add(clock_now, when);
return schedule_absolute(at, a);
}
bool is_enabled() const {return isenabled;}
absolute clock() const {return clock_now;}
void start() const
{
if (!isenabled) {
isenabled = true;
rxsc::recursion r;
r.reset(false);
while (!empty() && isenabled) {
auto next = top();
pop();
if (next.what.is_subscribed()) {
if (next.when > clock_now) {
clock_now = next.when;
}
next.what(r.get_recurse());
}
}
isenabled = false;
}
}
void stop() const
{
isenabled = false;
}
void advance_to(absolute time) const
{
if (time < clock_now) {
std::terminate();
}
if (time == clock_now) {
return;
}
if (!isenabled) {
isenabled = true;
rxsc::recursion r;
while (!empty() && isenabled) {
auto next = top();
if (next.when <= time) {
pop();
if (!next.what.is_subscribed()) {
continue;
}
if (next.when > clock_now) {
clock_now = next.when;
}
next.what(r.get_recurse());
}
else {
break;
}
}
isenabled = false;
clock_now = time;
}
else {
std::terminate();
}
}
void advance_by(relative time) const
{
auto dt = add(clock_now, time);
if (dt < clock_now) {
std::terminate();
}
if (dt == clock_now) {
return;
}
if (!isenabled) {
advance_to(dt);
}
else {
std::terminate();
}
}
void sleep(relative time) const
{
auto dt = add(clock_now, time);
if (dt < clock_now) {
std::terminate();
}
clock_now = dt;
}
};
}
template<class Absolute, class Relative>
struct virtual_time : public detail::virtual_time_base<Absolute, Relative>
{
typedef detail::virtual_time_base<Absolute, Relative> base;
typedef typename base::item_type item_type;
typedef detail::schedulable_queue<
typename item_type::time_point_type> queue_item_time;
mutable queue_item_time q;
public:
virtual ~virtual_time()
{
}
protected:
virtual_time()
{
}
explicit virtual_time(typename base::absolute initialClock)
: base(initialClock)
{
}
virtual item_type top() const {
return q.top();
}
virtual void pop() const {
q.pop();
}
virtual bool empty() const {
return q.empty();
}
using base::schedule_absolute;
using base::schedule_relative;
virtual void schedule_absolute(typename base::absolute when, const schedulable& a) const
{
// use a separate subscription here so that a's subscription is not affected
auto run = make_schedulable(
a.get_worker(),
composite_subscription(),
[a](const schedulable& scbl) {
rxsc::recursion r;
r.reset(false);
if (scbl.is_subscribed()) {
scbl.unsubscribe(); // unsubscribe() run, not a;
a(r.get_recurse());
}
});
q.push(item_type(when, run));
}
};
}
}
#endif