feat add just,then,traits.h

This commit is contained in:
tqcq 2024-03-21 20:59:37 +08:00
parent 069aa09d6d
commit 7fbf260c43
11 changed files with 625 additions and 97 deletions

View File

@ -120,7 +120,7 @@ if(SLED_BUILD_TESTS)
src/exec/just_test.cc
src/any_test.cc
src/filesystem/path_test.cc
src/profiling/profiling_test.cc
# src/profiling/profiling_test.cc
src/strings/base64_test.cc
src/cleanup_test.cc
src/status_or_test.cc

View File

@ -0,0 +1,391 @@
//! \file eggs/invoke.hpp
// Eggs.Invoke
//
// Copyright Agustin K-ballo Berge, Fusion Fenix 2017-2020
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef EGGS_INVOKE_HPP
#define EGGS_INVOKE_HPP
#include <functional>
#include <type_traits>
#include <utility>
namespace eggs {
namespace detail {
#define EGGS_FWD(...) static_cast<decltype(__VA_ARGS__) &&>(__VA_ARGS__)
///////////////////////////////////////////////////////////////////////////
template<typename C, typename T, bool Ref, bool RefWrapper, bool IsFunction = std::is_function<T>::value>
struct invoke_mem_ptr;
// when `pm` is a pointer to member of a class `C` and
// `is_base_of_v<C, remove_reference_t<T>>` is `true`;
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/true, /*RefWrapper=*/false, /*IsFunction=*/false> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1>
constexpr auto operator()(T1 &&t1) const noexcept(noexcept(EGGS_FWD(t1).*pm)) -> decltype(EGGS_FWD(t1).*pm)
{
return EGGS_FWD(t1).*pm;
}
};
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/true, /*RefWrapper=*/false, /*IsFunction=*/true> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1, typename... Tn>
constexpr auto operator()(T1 &&t1, Tn &&...tn) const noexcept(noexcept((EGGS_FWD(t1).*pm)(EGGS_FWD(tn)...)))
-> decltype((EGGS_FWD(t1).*pm)(EGGS_FWD(tn)...))
{
return (EGGS_FWD(t1).*pm)(EGGS_FWD(tn)...);
}
};
// when `pm` is a pointer to member of a class `C` and
// `remove_cvref_t<T>` is a specialization of `reference_wrapper`;
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/false, /*RefWrapper=*/true, /*IsFunction=*/false> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1>
constexpr auto operator()(T1 &&t1) const noexcept(noexcept(t1.get().*pm)) -> decltype(t1.get().*pm)
{
return t1.get().*pm;
}
};
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/false, /*RefWrapper=*/true, /*IsFunction=*/true> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1, typename... Tn>
constexpr auto operator()(T1 &&t1, Tn &&...tn) const noexcept(noexcept((t1.get().*pm)(EGGS_FWD(tn)...)))
-> decltype((t1.get().*pm)(EGGS_FWD(tn)...))
{
return (t1.get().*pm)(EGGS_FWD(tn)...);
}
};
// when `pm` is a pointer to member of a class `C` and `T` does not
// satisfy the previous two items;
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/false, /*RefWrapper=*/false, /*IsFunction=*/false> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1>
constexpr auto operator()(T1 &&t1) const noexcept(noexcept((*EGGS_FWD(t1)).*pm)) -> decltype((*EGGS_FWD(t1)).*pm)
{
return (*EGGS_FWD(t1)).*pm;
}
};
template<typename C, typename T>
struct invoke_mem_ptr<C, T, /*Ref=*/false, /*RefWrapper=*/false, /*IsFunction=*/true> {
T C::*pm;
#if !__cpp_aggregate_paren_init
constexpr invoke_mem_ptr(T C::*pm) noexcept : pm(pm) {}
#endif
template<typename T1, typename... Tn>
constexpr auto operator()(T1 &&t1, Tn &&...tn) const noexcept(noexcept(((*EGGS_FWD(t1)).*pm)(EGGS_FWD(tn)...)))
-> decltype(((*EGGS_FWD(t1)).*pm)(EGGS_FWD(tn)...))
{
return ((*EGGS_FWD(t1)).*pm)(EGGS_FWD(tn)...);
}
};
///////////////////////////////////////////////////////////////////////////
template<typename F>
auto invoke(F &&, ...) -> F &&;
template<typename T, typename C, typename T1>
auto invoke(T C::*, T1 const &, ...) -> invoke_mem_ptr<C,
T,
/*Ref=*/std::is_base_of<C, T1>::value,
/*RefWrapper=*/false>;
template<typename T, typename C, typename X>
auto invoke(T C::*, std::reference_wrapper<X>, ...) -> invoke_mem_ptr<C,
T,
/*Ref=*/false,
/*RefWrapper=*/true>;
//! EGGS_INVOKE(F, ...)
//!
//! - _Returns_: `INVOKE(F __VA_OPT__(,) __VA_ARGS__)`.
#if __cplusplus > 201703L// C++20: P0306
#define EGGS_INVOKE(F, ...) \
(static_cast<decltype(::eggs::detail::invoke(F __VA_OPT__(, ) __VA_ARGS__))>(F)(__VA_ARGS__))
#elif _MSVC_TRADITIONAL
#define EGGS_INVOKE(F, ...) (static_cast<decltype(::eggs::detail::invoke(F, __VA_ARGS__))>(F)(__VA_ARGS__))
#else
#define EGGS_INVOKE(F, ...) (static_cast<decltype(::eggs::detail::invoke(F, ##__VA_ARGS__))>(F)(__VA_ARGS__))
#endif
///////////////////////////////////////////////////////////////////////////
// `INVOKE(f, t1, t2, ..., tN)` implicitly converted to `R`.
template<typename R, typename RD = typename std::remove_cv<R>::type>
struct invoke_r {
private:
static R conversion(R) noexcept;
public:
template<typename F, typename... Args>
static constexpr auto
call(F &&f, Args &&...args) noexcept(noexcept(conversion(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...))))
-> decltype(conversion(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...)))
{
return EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...);
}
};
// `static_cast<void>(INVOKE(f, t1, t2, ..., tN))` if `R` is _cv_ `void`.
template<typename R>
struct invoke_r<R, void> {
template<typename F, typename... Args>
static constexpr auto call(F &&f, Args &&...args) noexcept(noexcept(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...)))
-> decltype(static_cast<void>(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...)))
{
return static_cast<void>(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...));
}
};
//! EGGS_INVOKE(R, F, ...)
//!
//! - _Returns_: `INVOKE<R>(F __VA_OPT__(,) __VA_ARGS__)`.
#define EGGS_INVOKE_R(R, ...) (::eggs::detail::invoke_r<R>::call(__VA_ARGS__))
}// namespace detail
}// namespace eggs
namespace eggs {
///////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T, typename Enable = void>
struct invoke_result_impl {};
template<typename F, typename... Ts>
struct invoke_result_impl<F(Ts...), decltype((void) EGGS_INVOKE(std::declval<F>(), std::declval<Ts>()...))> {
using type = decltype(EGGS_INVOKE(std::declval<F>(), std::declval<Ts>()...));
};
}// namespace detail
//! template <class Fn, class... ArgTypes> struct invoke_result;
//!
//! - _Comments_: If the expression `INVOKE(std::declval<Fn>(),
//! std::declval<ArgTypes>()...)` is well-formed when treated as an
//! unevaluated operand, the member typedef `type` names the type
//! `decltype(INVOKE(std::declval<Fn>(), std::declval<ArgTypes>()...))`;
//! otherwise, there shall be no member `type`. Access checking is
//! performed as if in a context unrelated to `Fn` and `ArgTypes`. Only
//! the validity of the immediate context of the expression is considered.
//!
//! - _Preconditions_: `Fn` and all types in the template parameter pack
//! `ArgTypes` are complete types, _cv_ `void`, or arrays of unknown
//! bound.
template<typename Fn, typename... ArgTypes>
struct invoke_result : detail::invoke_result_impl<Fn && (ArgTypes && ...)> {};
//! template <class Fn, class... ArgTypes>
//! using invoke_result_t = typename invoke_result<Fn, ArgTypes...>::type;
template<typename Fn, typename... ArgTypes>
using invoke_result_t = typename invoke_result<Fn, ArgTypes...>::type;
///////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T, typename Enable = void>
struct is_invocable_impl : std::false_type {};
template<typename F, typename... Ts>
struct is_invocable_impl<F(Ts...), decltype((void) EGGS_INVOKE(std::declval<F>(), std::declval<Ts>()...))>
: std::true_type {};
}// namespace detail
//! template <class Fn, class... ArgTypes> struct is_invocable;
//!
//! - _Condition_: The expression `INVOKE(std::declval<Fn>(),
//! std::declval<ArgTypes>()...)` is well-formed when treated as an
//! unevaluated operand.
//!
//! - _Comments_: `Fn` and all types in the template parameter pack
//! `ArgTypes` shall be complete types, _cv_ `void`, or arrays of
//! unknown bound.
template<typename Fn, typename... ArgTypes>
struct is_invocable : detail::is_invocable_impl<Fn && (ArgTypes && ...)>::type {};
#if __cpp_variable_templates
//! template <class Fn, class... ArgTypes> // (C++14)
//! inline constexpr bool is_invocable_v =
//! eggs::is_invocable<Fn, ArgTypes...>::value;
template<typename Fn, typename... ArgTypes>
#if __cpp_inline_variables
inline
#endif
constexpr bool is_invocable_v = is_invocable<Fn, ArgTypes...>::value;
#endif
///////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T, typename R, typename Enable = void>
struct is_invocable_r_impl : std::false_type {};
template<typename F, typename... Ts, typename R>
struct is_invocable_r_impl<F(Ts...), R, decltype((void) EGGS_INVOKE_R(R, std::declval<F>(), std::declval<Ts>()...))>
: std::true_type {};
}// namespace detail
//! template <class R, class Fn, class... ArgTypes> struct is_invocable_r;
//!
//! - _Condition_: The expression `INVOKE<R>(std::declval<Fn>(),
//! std::declval<ArgTypes>()...)` is well-formed when treated as an
//! unevaluated operand.
//!
//! - _Comments_: `Fn`, `R`, and all types in the template parameter pack
//! `ArgTypes` shall be complete types, _cv_ `void`, or arrays of
//! unknown bound.
template<typename R, typename Fn, typename... ArgTypes>
struct is_invocable_r : detail::is_invocable_r_impl<Fn && (ArgTypes && ...), R>::type {};
#if __cpp_variable_templates
//! template <class R, class Fn, class... ArgTypes> // (C++14)
//! inline constexpr bool is_invocable_r_v =
//! eggs::is_invocable_r<R, Fn, ArgTypes...>::value;
template<typename R, typename Fn, typename... ArgTypes>
#if __cpp_inline_variables
inline
#endif
constexpr bool is_invocable_r_v = is_invocable_r<R, Fn, ArgTypes...>::value;
#endif
///////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T, typename Enable = void>
struct is_nothrow_invocable_impl : std::false_type {};
template<typename F, typename... Ts>
struct is_nothrow_invocable_impl<F(Ts...), decltype((void) EGGS_INVOKE(std::declval<F>(), std::declval<Ts>()...))>
: std::integral_constant<bool, noexcept(EGGS_INVOKE(std::declval<F>(), std::declval<Ts>()...))> {};
}// namespace detail
//! template <class Fn, class... ArgTypes> struct is_nothrow_invocable;
//!
//! - _Condition_: `eggs::is_invocable_v<Fn, ArgTypes...>` is `true` and
//! the expression `INVOKE(std::declval<Fn>(), std::declval<ArgTypes>()...)`
//! is known not to throw any exceptions.
//!
//! - _Comments_: `Fn` and all types in the template parameter pack
//! `ArgTypes` shall be complete types, _cv_ `void`, or arrays of
//! unknown bound.
template<typename Fn, typename... ArgTypes>
struct is_nothrow_invocable : detail::is_nothrow_invocable_impl<Fn && (ArgTypes && ...)>::type {};
#if __cpp_variable_templates
//! template <class Fn, class... ArgTypes> // (C++14)
//! inline constexpr bool is_nothrow_invocable_v =
//! eggs::is_nothrow_invocable<Fn, ArgTypes...>::value;
template<typename Fn, typename... ArgTypes>
#if __cpp_inline_variables
inline
#endif
constexpr bool is_nothrow_invocable_v = is_nothrow_invocable<Fn, ArgTypes...>::value;
#endif
///////////////////////////////////////////////////////////////////////////
namespace detail {
template<typename T, typename R, typename Enable = void>
struct is_nothrow_invocable_r_impl : std::false_type {};
template<typename F, typename... Ts, typename R>
struct is_nothrow_invocable_r_impl<F(Ts...),
R,
decltype((void) EGGS_INVOKE_R(R, std::declval<F>(), std::declval<Ts>()...))>
: std::integral_constant<bool, noexcept(EGGS_INVOKE_R(R, std::declval<F>(), std::declval<Ts>()...))> {};
}// namespace detail
//! template <class R, class Fn, class... ArgTypes> struct is_nothrow_invocable_r;
//!
//! - _Condition_: `eggs::is_invocable_r_v<R, Fn, ArgTypes...>` is `true`
//! and the expression `INVOKE(std::declval<Fn>(), std::declval<ArgTypes>()...)`
//! is known not to throw any exceptions.
//!
//! - _Comments_: `Fn`, `R`, and all types in the template parameter pack
//! `ArgTypes` shall be complete types, _cv_ `void`, or arrays of
//! unknown bound.
template<typename R, typename Fn, typename... ArgTypes>
struct is_nothrow_invocable_r : detail::is_nothrow_invocable_r_impl<Fn && (ArgTypes && ...), R>::type {};
#if __cpp_variable_templates
//! template <class R, class Fn, class... ArgTypes> // (C++14)
//! inline constexpr bool is_nothrow_invocable_r_v =
//! eggs::is_nothrow_invocable_r<R, Fn, ArgTypes...>::value;
template<typename R, typename Fn, typename... ArgTypes>
#if __cpp_inline_variables
inline
#endif
constexpr bool is_nothrow_invocable_r_v = is_nothrow_invocable_r<R, Fn, ArgTypes...>::value;
#endif
///////////////////////////////////////////////////////////////////////////
//! template <class F, class... Args>
//! constexpr eggs::invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
//! noexcept(eggs::is_nothrow_invocable_v<F, Args...>);
//!
//! - _Returns_: `INVOKE(std::forward<F>(f), std::forward<Args>(args)...)`.
//!
//! - _Remarks_: This function shall not participate in overload resolution
//! unless `eggs::is_invocable_v<F, Args...>` is `true`.
template<typename Fn, typename... ArgTypes>
constexpr auto
invoke(Fn &&f, ArgTypes &&...args) noexcept(noexcept(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...)))
-> decltype(EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...))
{
return EGGS_INVOKE(EGGS_FWD(f), EGGS_FWD(args)...);
}
///////////////////////////////////////////////////////////////////////////
//! template <class R, class F, class... Args> // (extension)
//! constexpr R eggs::invoke_r(F&& f, Args&&... args)
//! noexcept(eggs::is_nothrow_invocable_r_v<R, F, Args...>);
//!
//! - _Returns_: `INVOKE<R>(std::forward<F>(f), std::forward<Args>(args)...)`.
//!
//! - _Remarks_: This function shall not participate in overload resolution
//! unless `eggs::is_invocable_r_v<R, F, Args...>` is `true`.
template<typename R, typename Fn, typename... ArgTypes>
constexpr auto
invoke_r(Fn &&f, ArgTypes &&...args) noexcept(noexcept(EGGS_INVOKE_R(R, EGGS_FWD(f), EGGS_FWD(args)...)))
-> decltype(EGGS_INVOKE_R(R, EGGS_FWD(f), EGGS_FWD(args)...))
{
return EGGS_INVOKE_R(R, EGGS_FWD(f), EGGS_FWD(args)...);
}
#undef EGGS_FWD
}// namespace eggs
#endif /*EGGS_INVOKE_HPP*/

View File

@ -0,0 +1,39 @@
#ifndef SLED_EXEC_DETAIL_JUST_H
#define SLED_EXEC_DETAIL_JUST_H
#pragma once
#include <iostream>
#include <utility>
namespace sled {
template<typename TReceiver, typename T>
struct JustOperation {
TReceiver receiver;
T value;
void Start() { receiver.SetValue(std::move(value)); }
};
template<typename T>
struct JustSender {
using result_t = T;
T value;
template<typename TReceiver>
JustOperation<TReceiver, T> Connect(TReceiver &&receiver)
{
return {std::forward<TReceiver>(receiver), std::forward<T>(value)};
}
};
template<typename T>
JustSender<T>
Just(T &&t)
{
return {std::forward<T>(t)};
}
}// namespace sled
#endif// SLED_EXEC_DETAIL_JUST_H

View File

@ -0,0 +1,68 @@
#ifndef SLED_EXEC_DETAIL_SYNC_WAIT_H
#define SLED_EXEC_DETAIL_SYNC_WAIT_H
#pragma once
#include "sled/optional.h"
#include "sled/synchronization/mutex.h"
#include "traits.h"
#include <exception>
namespace sled {
struct SyncWaitData {
sled::Mutex lock;
sled::ConditionVariable cv;
std::exception_ptr err;
bool done = false;
};
template<typename T>
struct SyncWaitReceiver {
SyncWaitData &data;
sled::optional<T> &value;
void SetValue(T &&val)
{
sled::MutexLock lock(&data.lock);
value.emplace(val);
data.done = true;
data.cv.NotifyOne();
}
void SetError(std::exception_ptr err)
{
sled::MutexLock lock(&data.lock);
data.err = err;
data.done = true;
data.cv.NotifyOne();
}
void SetStopped(std::exception_ptr err)
{
sled::MutexLock lock(&data.lock);
data.done = true;
data.cv.NotifyOne();
}
};
template<typename TSender>
sled::optional<SenderResultT<TSender>>
SyncWait(TSender sender)
{
using T = SenderResultT<TSender>;
SyncWaitData data;
sled::optional<T> value;
auto op = sender.Connect(SyncWaitReceiver<T>{data, value});
op.Start();
sled::MutexLock lock(&data.lock);
data.cv.Wait(lock, [&data] { return data.done; });
if (data.err) { std::rethrow_exception(data.err); }
return value;
}
}// namespace sled
#endif// SLED_EXEC_DETAIL_SYNC_WAIT_H

View File

@ -0,0 +1,54 @@
#ifndef SLED_EXEC_DETAIL_THEN_H
#define SLED_EXEC_DETAIL_THEN_H
#pragma once
#include "traits.h"
#include <exception>
#include <functional>
namespace sled {
template<typename TReceiver, typename F>
struct ThenReceiver {
TReceiver receiver;
F func;
template<typename T>
void SetValue(T &&value)
{
receiver.SetValue(func(std::forward<T>(value)));
}
void SetError(std::exception_ptr err) { receiver.SetError(err); }
void SetStopped() { receiver.SetStopped(); }
};
template<typename TSender, typename TReceiver, typename F>
struct ThenOperation {
ConnectResultT<TSender, ThenReceiver<TReceiver, F>> op;
void Start() { op.Start(); }
};
template<typename TSender, typename F>
struct ThenSender {
using result_t = typename eggs::invoke_result_t<F, SenderResultT<TSender>>;
TSender sender;
F func;
template<typename TReceiver>
ThenOperation<TSender, TReceiver, F> Connect(TReceiver &&receiver)
{
return {sender.Connect(ThenReceiver<TReceiver, F>{std::forward<TReceiver>(receiver), func})};
}
};
template<typename TSender, typename F>
ThenSender<TSender, F>
Then(TSender sender, F &&func)
{
return {std::forward<TSender>(sender), std::forward<F>(func)};
}
}// namespace sled
#endif// SLED_EXEC_DETAIL_THEN_H

View File

@ -0,0 +1,16 @@
#ifndef SLED_EXEC_DETAIL_TRAITS_H
#define SLED_EXEC_DETAIL_TRAITS_H
#pragma once
#include "invoke_result.h"
#include <type_traits>
namespace sled {
template<typename TSender, typename TReceiver>
using ConnectResultT = decltype(std::declval<TSender>().Connect(std::declval<TReceiver>()));
template<typename TSender>
using SenderResultT = typename TSender::result_t;
}// namespace sled
#endif// SLED_EXEC_DETAIL_TRAITS_H

10
include/sled/exec/exec.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef SLED_EXEC_EXEC_H
#define SLED_EXEC_EXEC_H
#pragma once
#include "detail/just.h"
#include "detail/sync_wait.h"
#include "detail/then.h"
namespace sled {}
#endif// SLED_EXEC_EXEC_H

View File

@ -1,68 +0,0 @@
#pragma once
#ifndef SLED_EXEC_JUST_H
#define SLED_EXEC_JUST_H
#include <iostream>
#include <utility>
namespace sled {
struct immovable {
immovable() = default;
immovable(immovable &&) = delete;
};
template<typename S, typename R>
using connect_result_t = decltype(connect(std::declval<S>(), std::declval<R>()));
template<typename T>
using sender_result_t = typename T::result_t;
template<typename R, typename T>
struct just_operation : immovable {
R receiver;
T value;
friend void start(just_operation &self) { set_value(self.receiver, self.value); }
};
template<typename T>
struct just_sender {
using result_t = T;
T value;
template<typename R>
just_operation<R, T> connect(R receiver)
{
return {{}, receiver, this->value};
}
};
template<typename T>
just_sender<T>
just(T t)
{
return {t};
}
struct cout_receiver {
template<typename T>
friend void set_value(cout_receiver self, T &&val)
{
std::cout << "Result: " << val << std::endl;
}
friend void set_error(cout_receiver self, std::exception_ptr e)
{
try {
std::rethrow_exception(e);
} catch (const std::exception &e) {
std::cout << "Error: " << e.what() << std::endl;
}
}
friend void set_stopped(cout_receiver self) { std::cout << "Stopped" << std::endl; }
};
}// namespace sled
#endif// SLED_EXEC_JUST_H

View File

@ -59,9 +59,9 @@ private:
bool WaitSelect(int64_t cusWait, bool process_io);
uint64_t next_dispatcher_key_ = 0;
std::unordered_map<uint64_t, Dispatcher *> dispatcher_by_key_;
std::unordered_map<Dispatcher *, uint64_t> key_by_dispatcher_;
std::vector<uint64_t> current_dispatcher_keys_;
std::unordered_map<uint64_t, Dispatcher *> dispatcher_by_key_ GUARDED_BY(lock_);
std::unordered_map<Dispatcher *, uint64_t> key_by_dispatcher_ GUARDED_BY(lock_);
std::vector<uint64_t> current_dispatcher_keys_ GUARDED_BY(lock_);
Signaler *signal_wakeup_;
// Mutex lock_;
RecursiveMutex lock_;
@ -91,10 +91,7 @@ public:
int Send(const void *pv, size_t cb) override;
int SendTo(const void *pv, size_t cb, const SocketAddress &addr) override;
int Recv(void *pv, size_t cb, int64_t *timestamp) override;
int RecvFrom(void *pv,
size_t cb,
SocketAddress *paddr,
int64_t *timestamp) override;
int RecvFrom(void *pv, size_t cb, SocketAddress *paddr, int64_t *timestamp) override;
int Listen(int backlog) override;
Socket *Accept(SocketAddress *paddr) override;
@ -108,16 +105,9 @@ protected:
int DoConnect(const SocketAddress &addr);
virtual SOCKET DoAccept(SOCKET socket, sockaddr *addr, socklen_t *addrlen);
virtual int DoSend(SOCKET socket, const char *buf, int len, int flags);
virtual int DoSendTo(SOCKET socket,
const char *buf,
int len,
int flags,
const struct sockaddr *dest_addr,
socklen_t addrlen);
int DoReadFromSocket(void *buffer,
size_t length,
SocketAddress *out_addr,
int64_t *timestamp);
virtual int
DoSendTo(SOCKET socket, const char *buf, int len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen);
int DoReadFromSocket(void *buffer, size_t length, SocketAddress *out_addr, int64_t *timestamp);
void OnResolveResult(AsyncResolverInterface *resolver);
void UpdateLastError();
@ -134,7 +124,7 @@ protected:
bool udp_;
int family_ = 0;
mutable Mutex mutex_;
int error_;
int error_ GUARDED_BY(mutex_);
ConnState state_;
AsyncResolver *resolver_;

View File

@ -78,10 +78,7 @@ public:
LockGuard(const LockGuard &) = delete;
LockGuard &operator=(const LockGuard &) = delete;
explicit LockGuard(TLock *lock) EXCLUSIVE_LOCK_FUNCTION() : mutex_(lock)
{
mutex_->Lock();
};
explicit LockGuard(TLock *lock) EXCLUSIVE_LOCK_FUNCTION() : mutex_(lock) { mutex_->Lock(); };
~LockGuard() UNLOCK_FUNCTION() { mutex_->Unlock(); };
@ -150,7 +147,7 @@ public:
template<typename Predicate>
inline void Wait(MutexLock &lock, Predicate &&pred)
{
cv_.wait(lock, std::forward<Predicate>(pred));
cv_.wait(lock.lock_, std::forward<Predicate>(pred));
}
template<typename Predicate>

View File

@ -1,9 +1,40 @@
#include "sled/ref_count.h"
#include <gtest/gtest.h>
#include <sled/exec/just.h>
#include <sled/exec/exec.h>
TEST(just, basic)
struct cout_receiver {
template<typename T>
void SetValue(T &&val)
{
// 这个receiver什么都不干只对收集到的结果输出
std::cout << "Result: " << val << '\n';
}
void SetError(std::exception_ptr err) { std::terminate(); }
void SetStopped() { std::terminate(); }
};
TEST(Just, basic)
{
sled::just_sender<int> sender = sled::just(1);
auto op = connect(sender, sled::cout_receiver{});
sled::Just(42).Connect(cout_receiver{}).Start();
sled::Just(11).Connect(cout_receiver{}).Start();
}
TEST(Then, basic)
{
auto s1 = sled::Just(42);
auto s2 = sled::Then(s1, [](int x) { return x + 1; });
auto s3 = sled::Then(s2, [](int x) { return x + 1; });
auto s4 = sled::Then(s3, [](int x) { return x + 1; });
s4.Connect(cout_receiver{}).Start();
}
TEST(SyncWait, basic)
{
auto s1 = sled::Just(42);
auto s2 = sled::Then(s1, [](int x) { return x + 1; });
auto s3 = sled::Then(s2, [](int x) { return x + 1; });
auto s4 = sled::Then(s3, [](int x) { return x + 1; });
auto s5 = sled::SyncWait(s4).value();
std::cout << "Result: " << s5 << '\n';
}