feat add asio

This commit is contained in:
tqcq
2024-05-15 16:47:26 +08:00
parent af261ab82e
commit 3d73d445fb
626 changed files with 170049 additions and 398 deletions

View File

@@ -34,13 +34,13 @@
//
// Implements management of profile timers and the corresponding signal handler.
#include "config.h"
#include "profile-handler.h"
#include "config.h"
#if !(defined(__CYGWIN__) || defined(__CYGWIN32__))
#include <stdio.h>
#include <errno.h>
#include <stdio.h>
#include <sys/time.h>
#include <list>
@@ -79,155 +79,148 @@ using std::string;
// This structure is used by ProfileHandlerRegisterCallback and
// ProfileHandlerUnregisterCallback as a handle to a registered callback.
struct ProfileHandlerToken {
// Sets the callback and associated arg.
ProfileHandlerToken(ProfileHandlerCallback cb, void* cb_arg)
: callback(cb),
callback_arg(cb_arg) {
}
// Sets the callback and associated arg.
ProfileHandlerToken(ProfileHandlerCallback cb, void *cb_arg) : callback(cb), callback_arg(cb_arg) {}
// Callback function to be invoked on receiving a profile timer interrupt.
ProfileHandlerCallback callback;
// Argument for the callback function.
void* callback_arg;
// Callback function to be invoked on receiving a profile timer interrupt.
ProfileHandlerCallback callback;
// Argument for the callback function.
void *callback_arg;
};
// Blocks a signal from being delivered to the current thread while the object
// is alive. Unblocks it upon destruction.
class ScopedSignalBlocker {
public:
ScopedSignalBlocker(int signo) {
sigemptyset(&sig_set_);
sigaddset(&sig_set_, signo);
RAW_CHECK(sigprocmask(SIG_BLOCK, &sig_set_, NULL) == 0,
"sigprocmask (block)");
}
~ScopedSignalBlocker() {
RAW_CHECK(sigprocmask(SIG_UNBLOCK, &sig_set_, NULL) == 0,
"sigprocmask (unblock)");
}
public:
ScopedSignalBlocker(int signo)
{
sigemptyset(&sig_set_);
sigaddset(&sig_set_, signo);
RAW_CHECK(sigprocmask(SIG_BLOCK, &sig_set_, NULL) == 0, "sigprocmask (block)");
}
private:
sigset_t sig_set_;
~ScopedSignalBlocker() { RAW_CHECK(sigprocmask(SIG_UNBLOCK, &sig_set_, NULL) == 0, "sigprocmask (unblock)"); }
private:
sigset_t sig_set_;
};
// This class manages profile timers and associated signal handler. This is a
// a singleton.
class ProfileHandler {
public:
// Registers the current thread with the profile handler.
void RegisterThread();
public:
// Registers the current thread with the profile handler.
void RegisterThread();
// Registers a callback routine to receive profile timer ticks. The returned
// token is to be used when unregistering this callback and must not be
// deleted by the caller.
ProfileHandlerToken* RegisterCallback(ProfileHandlerCallback callback,
void* callback_arg);
// Registers a callback routine to receive profile timer ticks. The returned
// token is to be used when unregistering this callback and must not be
// deleted by the caller.
ProfileHandlerToken *RegisterCallback(ProfileHandlerCallback callback, void *callback_arg);
// Unregisters a previously registered callback. Expects the token returned
// by the corresponding RegisterCallback routine.
void UnregisterCallback(ProfileHandlerToken* token)
NO_THREAD_SAFETY_ANALYSIS;
// Unregisters a previously registered callback. Expects the token returned
// by the corresponding RegisterCallback routine.
void UnregisterCallback(ProfileHandlerToken *token) NO_THREAD_SAFETY_ANALYSIS;
// Unregisters all the callbacks and stops the timer(s).
void Reset();
// Unregisters all the callbacks and stops the timer(s).
void Reset();
// Gets the current state of profile handler.
void GetState(ProfileHandlerState* state);
// Gets the current state of profile handler.
void GetState(ProfileHandlerState *state);
// Initializes and returns the ProfileHandler singleton.
static ProfileHandler* Instance();
// Initializes and returns the ProfileHandler singleton.
static ProfileHandler *Instance();
private:
ProfileHandler();
~ProfileHandler();
private:
ProfileHandler();
~ProfileHandler();
// Largest allowed frequency.
static const int32 kMaxFrequency = 4000;
// Default frequency.
static const int32 kDefaultFrequency = 100;
// Largest allowed frequency.
static const int32 kMaxFrequency = 4000;
// Default frequency.
static const int32 kDefaultFrequency = 100;
// ProfileHandler singleton.
static ProfileHandler* instance_;
// ProfileHandler singleton.
static ProfileHandler *instance_;
// Initializes the ProfileHandler singleton via GoogleOnceInit.
static void Init();
// Initializes the ProfileHandler singleton via GoogleOnceInit.
static void Init();
// Timer state as configured previously.
bool timer_running_;
// Timer state as configured previously.
bool timer_running_;
// The number of profiling signal interrupts received.
int64 interrupts_ GUARDED_BY(signal_lock_);
// The number of profiling signal interrupts received.
int64 interrupts_ GUARDED_BY(signal_lock_);
// Profiling signal interrupt frequency, read-only after construction.
int32 frequency_;
// Profiling signal interrupt frequency, read-only after construction.
int32 frequency_;
// ITIMER_PROF (which uses SIGPROF), or ITIMER_REAL (which uses SIGALRM).
// Translated into an equivalent choice of clock if per_thread_timer_enabled_
// is true.
int timer_type_;
// ITIMER_PROF (which uses SIGPROF), or ITIMER_REAL (which uses SIGALRM).
// Translated into an equivalent choice of clock if per_thread_timer_enabled_
// is true.
int timer_type_;
// Signal number for timer signal.
int signal_number_;
// Signal number for timer signal.
int signal_number_;
// Counts the number of callbacks registered.
int32 callback_count_ GUARDED_BY(control_lock_);
// Counts the number of callbacks registered.
int32 callback_count_ GUARDED_BY(control_lock_);
// Is profiling allowed at all?
bool allowed_;
// Is profiling allowed at all?
bool allowed_;
// Must be false if HAVE_LINUX_SIGEV_THREAD_ID is not defined.
bool per_thread_timer_enabled_;
// Must be false if HAVE_LINUX_SIGEV_THREAD_ID is not defined.
bool per_thread_timer_enabled_;
#if HAVE_LINUX_SIGEV_THREAD_ID
// this is used to destroy per-thread profiling timers on thread
// termination
pthread_key_t thread_timer_key;
// this is used to destroy per-thread profiling timers on thread
// termination
pthread_key_t thread_timer_key;
#endif
// This lock serializes the registration of threads and protects the
// callbacks_ list below.
// Locking order:
// In the context of a signal handler, acquire signal_lock_ to walk the
// callback list. Otherwise, acquire control_lock_, disable the signal
// handler and then acquire signal_lock_.
SpinLock control_lock_ ACQUIRED_BEFORE(signal_lock_);
SpinLock signal_lock_;
// This lock serializes the registration of threads and protects the
// callbacks_ list below.
// Locking order:
// In the context of a signal handler, acquire signal_lock_ to walk the
// callback list. Otherwise, acquire control_lock_, disable the signal
// handler and then acquire signal_lock_.
SpinLock control_lock_ ACQUIRED_BEFORE(signal_lock_);
SpinLock signal_lock_;
// Holds the list of registered callbacks. We expect the list to be pretty
// small. Currently, the cpu profiler (base/profiler) and thread module
// (base/thread.h) are the only two components registering callbacks.
// Following are the locking requirements for callbacks_:
// For read-write access outside the SIGPROF handler:
// - Acquire control_lock_
// - Disable SIGPROF handler.
// - Acquire signal_lock_
// - Nothing that takes ~any other lock can be nested
// here. E.g. including malloc. Otherwise deadlock is possible.
// For read-only access in the context of SIGPROF handler
// (Read-write access is *not allowed* in the SIGPROF handler)
// - Acquire signal_lock_
// For read-only access outside SIGPROF handler:
// - Acquire control_lock_
typedef list<ProfileHandlerToken*> CallbackList;
typedef CallbackList::iterator CallbackIterator;
CallbackList callbacks_ GUARDED_BY(signal_lock_);
// Holds the list of registered callbacks. We expect the list to be pretty
// small. Currently, the cpu profiler (base/profiler) and thread module
// (base/thread.h) are the only two components registering callbacks.
// Following are the locking requirements for callbacks_:
// For read-write access outside the SIGPROF handler:
// - Acquire control_lock_
// - Disable SIGPROF handler.
// - Acquire signal_lock_
// - Nothing that takes ~any other lock can be nested
// here. E.g. including malloc. Otherwise deadlock is possible.
// For read-only access in the context of SIGPROF handler
// (Read-write access is *not allowed* in the SIGPROF handler)
// - Acquire signal_lock_
// For read-only access outside SIGPROF handler:
// - Acquire control_lock_
typedef list<ProfileHandlerToken *> CallbackList;
typedef CallbackList::iterator CallbackIterator;
CallbackList callbacks_ GUARDED_BY(signal_lock_);
// Starts or stops the interval timer.
// Will ignore any requests to enable or disable when
// per_thread_timer_enabled_ is true.
void UpdateTimer(bool enable) EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Starts or stops the interval timer.
// Will ignore any requests to enable or disable when
// per_thread_timer_enabled_ is true.
void UpdateTimer(bool enable) EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Returns true if the handler is not being used by something else.
// This checks the kernel's signal handler table.
bool IsSignalHandlerAvailable();
// Returns true if the handler is not being used by something else.
// This checks the kernel's signal handler table.
bool IsSignalHandlerAvailable();
// Signal handler. Iterates over and calls all the registered callbacks.
static void SignalHandler(int sig, siginfo_t* sinfo, void* ucontext);
// Signal handler. Iterates over and calls all the registered callbacks.
static void SignalHandler(int sig, siginfo_t *sinfo, void *ucontext);
DISALLOW_COPY_AND_ASSIGN(ProfileHandler);
DISALLOW_COPY_AND_ASSIGN(ProfileHandler);
};
ProfileHandler* ProfileHandler::instance_ = NULL;
ProfileHandler *ProfileHandler::instance_ = NULL;
const int32 ProfileHandler::kMaxFrequency;
const int32 ProfileHandler::kDefaultFrequency;
@@ -238,87 +231,82 @@ const int32 ProfileHandler::kDefaultFrequency;
// for NULL or not in Instance.
extern "C" {
#if HAVE_LINUX_SIGEV_THREAD_ID
int timer_create(clockid_t clockid, struct sigevent* evp,
timer_t* timerid) ATTRIBUTE_WEAK;
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid) ATTRIBUTE_WEAK;
int timer_delete(timer_t timerid) ATTRIBUTE_WEAK;
int timer_settime(timer_t timerid, int flags, const struct itimerspec* value,
struct itimerspec* ovalue) ATTRIBUTE_WEAK;
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value, struct itimerspec *ovalue) ATTRIBUTE_WEAK;
#endif
}
#if HAVE_LINUX_SIGEV_THREAD_ID
struct timer_id_holder {
timer_t timerid;
timer_id_holder(timer_t _timerid) : timerid(_timerid) {}
timer_t timerid;
timer_id_holder(timer_t _timerid) : timerid(_timerid) {}
};
extern "C" {
static void ThreadTimerDestructor(void *arg) {
if (!arg) {
return;
}
static void
ThreadTimerDestructor(void *arg)
{
if (!arg) { return; }
timer_id_holder *holder = static_cast<timer_id_holder *>(arg);
timer_delete(holder->timerid);
delete holder;
}
}
}
static void CreateThreadTimerKey(pthread_key_t *pkey) {
int rv = pthread_key_create(pkey, ThreadTimerDestructor);
if (rv) {
RAW_LOG(FATAL, "aborting due to pthread_key_create error: %s", strerror(rv));
}
static void
CreateThreadTimerKey(pthread_key_t *pkey)
{
int rv = pthread_key_create(pkey, ThreadTimerDestructor);
if (rv) { RAW_LOG(FATAL, "aborting due to pthread_key_create error: %s", strerror(rv)); }
}
static void StartLinuxThreadTimer(int timer_type, int signal_number,
int32 frequency, pthread_key_t timer_key) {
int rv;
struct sigevent sevp;
timer_t timerid;
struct itimerspec its;
memset(&sevp, 0, sizeof(sevp));
sevp.sigev_notify = SIGEV_THREAD_ID;
sevp.sigev_notify_thread_id = syscall(SYS_gettid);
sevp.sigev_signo = signal_number;
clockid_t clock = CLOCK_THREAD_CPUTIME_ID;
if (timer_type == ITIMER_REAL) {
clock = CLOCK_MONOTONIC;
}
rv = timer_create(clock, &sevp, &timerid);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_create error: %s", strerror(errno));
}
static void
StartLinuxThreadTimer(int timer_type, int signal_number, int32 frequency, pthread_key_t timer_key)
{
int rv;
struct sigevent sevp;
timer_t timerid;
struct itimerspec its;
memset(&sevp, 0, sizeof(sevp));
sevp.sigev_notify = SIGEV_THREAD_ID;
sevp.sigev_notify_thread_id = syscall(SYS_gettid);
sevp.sigev_signo = signal_number;
clockid_t clock = CLOCK_THREAD_CPUTIME_ID;
if (timer_type == ITIMER_REAL) { clock = CLOCK_MONOTONIC; }
rv = timer_create(clock, &sevp, &timerid);
if (rv) { RAW_LOG(FATAL, "aborting due to timer_create error: %s", strerror(errno)); }
timer_id_holder *holder = new timer_id_holder(timerid);
rv = pthread_setspecific(timer_key, holder);
if (rv) {
RAW_LOG(FATAL, "aborting due to pthread_setspecific error: %s", strerror(rv));
}
timer_id_holder *holder = new timer_id_holder(timerid);
rv = pthread_setspecific(timer_key, holder);
if (rv) { RAW_LOG(FATAL, "aborting due to pthread_setspecific error: %s", strerror(rv)); }
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 1000000000 / frequency;
its.it_value = its.it_interval;
rv = timer_settime(timerid, 0, &its, 0);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_settime error: %s", strerror(errno));
}
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 1000000000 / frequency;
its.it_value = its.it_interval;
rv = timer_settime(timerid, 0, &its, 0);
if (rv) { RAW_LOG(FATAL, "aborting due to timer_settime error: %s", strerror(errno)); }
}
#endif
void ProfileHandler::Init() {
instance_ = new ProfileHandler();
void
ProfileHandler::Init()
{
instance_ = new ProfileHandler();
}
ProfileHandler *
ProfileHandler::Instance()
{
static tcmalloc::TrivialOnce once;
ProfileHandler* ProfileHandler::Instance() {
static tcmalloc::TrivialOnce once;
once.RunOnce(&Init);
once.RunOnce(&Init);
assert(instance_ != nullptr);
assert(instance_ != nullptr);
return instance_;
return instance_;
}
ProfileHandler::ProfileHandler()
@@ -326,279 +314,289 @@ ProfileHandler::ProfileHandler()
interrupts_(0),
callback_count_(0),
allowed_(true),
per_thread_timer_enabled_(false) {
SpinLockHolder cl(&control_lock_);
per_thread_timer_enabled_(false)
{
SpinLockHolder cl(&control_lock_);
timer_type_ = (getenv("CPUPROFILE_REALTIME") ? ITIMER_REAL : ITIMER_PROF);
signal_number_ = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM);
timer_type_ = (getenv("CPUPROFILE_REALTIME") ? ITIMER_REAL : ITIMER_PROF);
signal_number_ = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM);
// Get frequency of interrupts (if specified)
char junk;
const char* fr = getenv("CPUPROFILE_FREQUENCY");
if (fr != NULL && (sscanf(fr, "%u%c", &frequency_, &junk) == 1) &&
(frequency_ > 0)) {
// Limit to kMaxFrequency
frequency_ = (frequency_ > kMaxFrequency) ? kMaxFrequency : frequency_;
} else {
frequency_ = kDefaultFrequency;
}
if (!allowed_) {
return;
}
#if HAVE_LINUX_SIGEV_THREAD_ID
// Do this early because we might be overriding signal number.
const char *per_thread = getenv("CPUPROFILE_PER_THREAD_TIMERS");
const char *signal_number = getenv("CPUPROFILE_TIMER_SIGNAL");
if (per_thread || signal_number) {
if (timer_create) {
CreateThreadTimerKey(&thread_timer_key);
per_thread_timer_enabled_ = true;
// Override signal number if requested.
if (signal_number) {
signal_number_ = strtol(signal_number, NULL, 0);
}
// Get frequency of interrupts (if specified)
char junk;
const char *fr = getenv("CPUPROFILE_FREQUENCY");
if (fr != NULL && (sscanf(fr, "%u%c", &frequency_, &junk) == 1) && (frequency_ > 0)) {
// Limit to kMaxFrequency
frequency_ = (frequency_ > kMaxFrequency) ? kMaxFrequency : frequency_;
} else {
RAW_LOG(INFO,
"Ignoring CPUPROFILE_PER_THREAD_TIMERS and\n"
" CPUPROFILE_TIMER_SIGNAL due to lack of timer_create().\n"
" Preload or link to librt.so for this to work");
frequency_ = kDefaultFrequency;
}
}
#endif
// If something else is using the signal handler,
// assume it has priority over us and stop.
if (!IsSignalHandlerAvailable()) {
RAW_LOG(INFO, "Disabling profiler because signal %d handler is already in use.",
signal_number_);
allowed_ = false;
return;
}
if (!allowed_) { return; }
// Install the signal handler.
struct sigaction sa;
sa.sa_sigaction = SignalHandler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
RAW_CHECK(sigaction(signal_number_, &sa, NULL) == 0, "sigprof (enable)");
}
ProfileHandler::~ProfileHandler() {
Reset();
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
pthread_key_delete(thread_timer_key);
}
#endif
}
// Do this early because we might be overriding signal number.
void ProfileHandler::RegisterThread() {
SpinLockHolder cl(&control_lock_);
const char *per_thread = getenv("CPUPROFILE_PER_THREAD_TIMERS");
const char *signal_number = getenv("CPUPROFILE_TIMER_SIGNAL");
if (!allowed_) {
return;
}
// Record the thread identifier and start the timer if profiling is on.
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
StartLinuxThreadTimer(timer_type_, signal_number_, frequency_,
thread_timer_key);
return;
}
#endif
UpdateTimer(callback_count_ > 0);
}
ProfileHandlerToken* ProfileHandler::RegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
ProfileHandlerToken* token = new ProfileHandlerToken(callback, callback_arg);
CallbackList copy;
copy.push_back(token);
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
callbacks_.splice(callbacks_.end(), copy);
}
++callback_count_;
UpdateTimer(true);
return token;
}
void ProfileHandler::UnregisterCallback(ProfileHandlerToken* token) {
SpinLockHolder cl(&control_lock_);
RAW_CHECK(callback_count_ > 0, "Invalid callback count");
CallbackList copy;
bool found = false;
for (ProfileHandlerToken* callback_token : callbacks_) {
if (callback_token == token) {
found = true;
} else {
copy.push_back(callback_token);
if (per_thread || signal_number) {
if (timer_create) {
CreateThreadTimerKey(&thread_timer_key);
per_thread_timer_enabled_ = true;
// Override signal number if requested.
if (signal_number) { signal_number_ = strtol(signal_number, NULL, 0); }
} else {
RAW_LOG(INFO,
"Ignoring CPUPROFILE_PER_THREAD_TIMERS and\n"
" CPUPROFILE_TIMER_SIGNAL due to lack of timer_create().\n"
" Preload or link to librt.so for this to work");
}
}
}
#endif
if (!found) {
RAW_LOG(FATAL, "Invalid token");
}
// If something else is using the signal handler,
// assume it has priority over us and stop.
if (!IsSignalHandlerAvailable()) {
RAW_LOG(INFO, "Disabling profiler because signal %d handler is already in use.", signal_number_);
allowed_ = false;
return;
}
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Replace callback list holding signal lock. We cannot call
// pretty much anything that takes locks. Including malloc
// locks. So we only swap here and cleanup later.
using std::swap;
swap(copy, callbacks_);
}
// copy gets deleted after signal_lock_ is dropped
--callback_count_;
if (callback_count_ == 0) {
UpdateTimer(false);
}
delete token;
// Install the signal handler.
struct sigaction sa;
sa.sa_sigaction = SignalHandler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
RAW_CHECK(sigaction(signal_number_, &sa, NULL) == 0, "sigprof (enable)");
}
void ProfileHandler::Reset() {
SpinLockHolder cl(&control_lock_);
CallbackList copy;
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Only do swap under this critical lock.
using std::swap;
swap(copy, callbacks_);
}
for (ProfileHandlerToken* token : copy) {
ProfileHandler::~ProfileHandler()
{
Reset();
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) { pthread_key_delete(thread_timer_key); }
#endif
}
void
ProfileHandler::RegisterThread()
{
SpinLockHolder cl(&control_lock_);
if (!allowed_) { return; }
// Record the thread identifier and start the timer if profiling is on.
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
StartLinuxThreadTimer(timer_type_, signal_number_, frequency_, thread_timer_key);
return;
}
#endif
UpdateTimer(callback_count_ > 0);
}
ProfileHandlerToken *
ProfileHandler::RegisterCallback(ProfileHandlerCallback callback, void *callback_arg)
{
ProfileHandlerToken *token = new ProfileHandlerToken(callback, callback_arg);
CallbackList copy;
copy.push_back(token);
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
callbacks_.splice(callbacks_.end(), copy);
}
++callback_count_;
UpdateTimer(true);
return token;
}
void
ProfileHandler::UnregisterCallback(ProfileHandlerToken *token)
{
SpinLockHolder cl(&control_lock_);
RAW_CHECK(callback_count_ > 0, "Invalid callback count");
CallbackList copy;
bool found = false;
for (ProfileHandlerToken *callback_token : callbacks_) {
if (callback_token == token) {
found = true;
} else {
copy.push_back(callback_token);
}
}
if (!found) { RAW_LOG(FATAL, "Invalid token"); }
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Replace callback list holding signal lock. We cannot call
// pretty much anything that takes locks. Including malloc
// locks. So we only swap here and cleanup later.
using std::swap;
swap(copy, callbacks_);
}
// copy gets deleted after signal_lock_ is dropped
--callback_count_;
if (callback_count_ == 0) { UpdateTimer(false); }
delete token;
}
callback_count_ = 0;
UpdateTimer(false);
// copy gets deleted here
}
void ProfileHandler::GetState(ProfileHandlerState* state) {
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_); // Protects interrupts_.
state->interrupts = interrupts_;
}
state->frequency = frequency_;
state->callback_count = callback_count_;
state->allowed = allowed_;
}
void ProfileHandler::UpdateTimer(bool enable) {
if (per_thread_timer_enabled_) {
// Ignore any attempts to disable it because that's not supported, and it's
// always enabled so enabling is always a NOP.
return;
}
if (enable == timer_running_) {
return;
}
timer_running_ = enable;
struct itimerval timer;
static const int kMillion = 1000000;
int interval_usec = enable ? kMillion / frequency_ : 0;
timer.it_interval.tv_sec = interval_usec / kMillion;
timer.it_interval.tv_usec = interval_usec % kMillion;
timer.it_value = timer.it_interval;
setitimer(timer_type_, &timer, 0);
}
bool ProfileHandler::IsSignalHandlerAvailable() {
struct sigaction sa;
RAW_CHECK(sigaction(signal_number_, NULL, &sa) == 0, "is-signal-handler avail");
// We only take over the handler if the current one is unset.
// It must be SIG_IGN or SIG_DFL, not some other function.
// SIG_IGN must be allowed because when profiling is allowed but
// not actively in use, this code keeps the handler set to SIG_IGN.
// That setting will be inherited across fork+exec. In order for
// any child to be able to use profiling, SIG_IGN must be treated
// as available.
return sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL;
}
void ProfileHandler::SignalHandler(int sig, siginfo_t* sinfo, void* ucontext) {
int saved_errno = errno;
// At this moment, instance_ must be initialized because the handler is
// enabled in RegisterThread or RegisterCallback only after
// ProfileHandler::Instance runs.
ProfileHandler* instance = instance_;
RAW_CHECK(instance != NULL, "ProfileHandler is not initialized");
{
SpinLockHolder sl(&instance->signal_lock_);
++instance->interrupts_;
for (CallbackIterator it = instance->callbacks_.begin();
it != instance->callbacks_.end();
++it) {
(*it)->callback(sig, sinfo, ucontext, (*it)->callback_arg);
void
ProfileHandler::Reset()
{
SpinLockHolder cl(&control_lock_);
CallbackList copy;
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Only do swap under this critical lock.
using std::swap;
swap(copy, callbacks_);
}
}
errno = saved_errno;
for (ProfileHandlerToken *token : copy) { delete token; }
callback_count_ = 0;
UpdateTimer(false);
// copy gets deleted here
}
void
ProfileHandler::GetState(ProfileHandlerState *state)
{
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);// Protects interrupts_.
state->interrupts = interrupts_;
}
state->frequency = frequency_;
state->callback_count = callback_count_;
state->allowed = allowed_;
}
void
ProfileHandler::UpdateTimer(bool enable)
{
if (per_thread_timer_enabled_) {
// Ignore any attempts to disable it because that's not supported, and it's
// always enabled so enabling is always a NOP.
return;
}
if (enable == timer_running_) { return; }
timer_running_ = enable;
struct itimerval timer;
static const int kMillion = 1000000;
int interval_usec = enable ? kMillion / frequency_ : 0;
timer.it_interval.tv_sec = interval_usec / kMillion;
timer.it_interval.tv_usec = interval_usec % kMillion;
timer.it_value = timer.it_interval;
setitimer(timer_type_, &timer, 0);
}
bool
ProfileHandler::IsSignalHandlerAvailable()
{
struct sigaction sa;
RAW_CHECK(sigaction(signal_number_, NULL, &sa) == 0, "is-signal-handler avail");
// We only take over the handler if the current one is unset.
// It must be SIG_IGN or SIG_DFL, not some other function.
// SIG_IGN must be allowed because when profiling is allowed but
// not actively in use, this code keeps the handler set to SIG_IGN.
// That setting will be inherited across fork+exec. In order for
// any child to be able to use profiling, SIG_IGN must be treated
// as available.
return sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL;
}
void
ProfileHandler::SignalHandler(int sig, siginfo_t *sinfo, void *ucontext)
{
int saved_errno = errno;
// At this moment, instance_ must be initialized because the handler is
// enabled in RegisterThread or RegisterCallback only after
// ProfileHandler::Instance runs.
ProfileHandler *instance = instance_;
RAW_CHECK(instance != NULL, "ProfileHandler is not initialized");
{
SpinLockHolder sl(&instance->signal_lock_);
++instance->interrupts_;
for (CallbackIterator it = instance->callbacks_.begin(); it != instance->callbacks_.end(); ++it) {
(*it)->callback(sig, sinfo, ucontext, (*it)->callback_arg);
}
}
errno = saved_errno;
}
// This module initializer registers the main thread, so it must be
// executed in the context of the main thread.
REGISTER_MODULE_INITIALIZER(profile_main, ProfileHandlerRegisterThread());
void ProfileHandlerRegisterThread() {
ProfileHandler::Instance()->RegisterThread();
void
ProfileHandlerRegisterThread()
{
ProfileHandler::Instance()->RegisterThread();
}
ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return ProfileHandler::Instance()->RegisterCallback(callback, callback_arg);
ProfileHandlerToken *
ProfileHandlerRegisterCallback(ProfileHandlerCallback callback, void *callback_arg)
{
return ProfileHandler::Instance()->RegisterCallback(callback, callback_arg);
}
void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
ProfileHandler::Instance()->UnregisterCallback(token);
void
ProfileHandlerUnregisterCallback(ProfileHandlerToken *token)
{
ProfileHandler::Instance()->UnregisterCallback(token);
}
void ProfileHandlerReset() {
return ProfileHandler::Instance()->Reset();
void
ProfileHandlerReset()
{
return ProfileHandler::Instance()->Reset();
}
void ProfileHandlerGetState(ProfileHandlerState* state) {
ProfileHandler::Instance()->GetState(state);
void
ProfileHandlerGetState(ProfileHandlerState *state)
{
ProfileHandler::Instance()->GetState(state);
}
#else // OS_CYGWIN
#else// OS_CYGWIN
// ITIMER_PROF doesn't work under cygwin. ITIMER_REAL is available, but doesn't
// work as well for profiling, and also interferes with alarm(). Because of
// these issues, unless a specific need is identified, profiler support is
// disabled under Cygwin.
void ProfileHandlerRegisterThread() {
void
ProfileHandlerRegisterThread()
{}
ProfileHandlerToken *
ProfileHandlerRegisterCallback(ProfileHandlerCallback callback, void *callback_arg)
{
return NULL;
}
ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return NULL;
}
void
ProfileHandlerUnregisterCallback(ProfileHandlerToken *token)
{}
void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
}
void
ProfileHandlerReset()
{}
void ProfileHandlerReset() {
}
void
ProfileHandlerGetState(ProfileHandlerState *state)
{}
void ProfileHandlerGetState(ProfileHandlerState* state) {
}
#endif // OS_CYGWIN
#endif// OS_CYGWIN