init repo.
This commit is contained in:
1366
3party/eigen/Eigen/src/SVD/BDCSVD.h
Normal file
1366
3party/eigen/Eigen/src/SVD/BDCSVD.h
Normal file
File diff suppressed because it is too large
Load Diff
812
3party/eigen/Eigen/src/SVD/JacobiSVD.h
Normal file
812
3party/eigen/Eigen/src/SVD/JacobiSVD.h
Normal file
@@ -0,0 +1,812 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
// forward declaration (needed by ICC)
|
||||
// the empty body is required by MSVC
|
||||
template<typename MatrixType, int QRPreconditioner,
|
||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct svd_precondition_2x2_block_to_be_real {};
|
||||
|
||||
/*** QR preconditioners (R-SVD)
|
||||
***
|
||||
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
|
||||
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
|
||||
*** JacobiSVD which by itself is only able to work on square matrices.
|
||||
***/
|
||||
|
||||
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
struct qr_preconditioner_should_do_anything
|
||||
{
|
||||
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
|
||||
b = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
|
||||
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
|
||||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
|
||||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
||||
> struct qr_preconditioner_impl {};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
||||
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
/*** preconditioner using FullPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||
};
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using ColPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using HouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef HouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** 2x2 SVD implementation
|
||||
***
|
||||
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
||||
***/
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
const RealScalar precision = NumTraits<Scalar>::epsilon();
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
// make sure first column is zero
|
||||
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
|
||||
|
||||
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
||||
{
|
||||
// work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
}
|
||||
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
// otherwise the second row is already zero, so we have nothing to do.
|
||||
}
|
||||
else
|
||||
{
|
||||
rot.c() = conj(work_matrix.coeff(p,p)) / n;
|
||||
rot.s() = work_matrix.coeff(q,p) / n;
|
||||
work_matrix.applyOnTheLeft(p,q,rot);
|
||||
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
|
||||
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.col(q) *= z;
|
||||
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
|
||||
}
|
||||
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
}
|
||||
|
||||
// update largest diagonal entry
|
||||
maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q))));
|
||||
// and check whether the 2x2 block is already diagonal
|
||||
RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
|
||||
return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
: traits<_MatrixType>
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* Here's an example demonstrating basic usage:
|
||||
* \include JacobiSVD_basic.cpp
|
||||
* Output: \verbinclude JacobiSVD_basic.out
|
||||
*
|
||||
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
|
||||
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
|
||||
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
|
||||
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible values for QRPreconditioner are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
|
||||
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
|
||||
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
|
||||
* process is more reliable than the optimized bidiagonal SVD iterations.
|
||||
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
|
||||
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
|
||||
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
||||
* if QR preconditioning is needed before applying it anyway.
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
{
|
||||
typedef SVDBase<JacobiSVD> Base;
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename Base::MatrixUType MatrixUType;
|
||||
typedef typename Base::MatrixVType MatrixVType;
|
||||
typedef typename Base::SingularValuesType SingularValuesType;
|
||||
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD()
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, m_computationOptions);
|
||||
}
|
||||
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::rank;
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
protected:
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_singularValues;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_computationOptions;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
using Base::m_rows;
|
||||
using Base::m_cols;
|
||||
using Base::m_diagSize;
|
||||
using Base::m_prescribedThreshold;
|
||||
WorkMatrixType m_workMatrix;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
MatrixType m_scaledMatrix;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
|
||||
{
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
{
|
||||
eigen_assert(!(m_computeThinU || m_computeThinV) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
}
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
||||
: m_computeThinU ? m_diagSize
|
||||
: 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
||||
: m_computeThinV ? m_diagSize
|
||||
: 0);
|
||||
m_workMatrix.resize(m_diagSize, m_diagSize);
|
||||
|
||||
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
JacobiSVD<MatrixType, QRPreconditioner>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
// only worsening the precision of U and V as we accumulate more rotations
|
||||
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
|
||||
|
||||
// limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
|
||||
if (!(numext::isfinite)(scale)) {
|
||||
m_isInitialized = true;
|
||||
m_info = InvalidInput;
|
||||
return *this;
|
||||
}
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
if(m_rows!=m_cols)
|
||||
{
|
||||
m_scaledMatrix = matrix / scale;
|
||||
m_qr_precond_morecols.run(*this, m_scaledMatrix);
|
||||
m_qr_precond_morerows.run(*this, m_scaledMatrix);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
|
||||
if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
||||
if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
|
||||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();
|
||||
|
||||
bool finished = false;
|
||||
while(!finished)
|
||||
{
|
||||
finished = true;
|
||||
|
||||
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
|
||||
|
||||
for(Index p = 1; p < m_diagSize; ++p)
|
||||
{
|
||||
for(Index q = 0; q < p; ++q)
|
||||
{
|
||||
// if this 2x2 sub-matrix is not diagonal already...
|
||||
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
|
||||
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
|
||||
RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
|
||||
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
// the complex to real operation returns true if the updated 2x2 block is not already diagonal
|
||||
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
||||
{
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
// accumulate resulting Jacobi rotations
|
||||
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
||||
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
||||
|
||||
m_workMatrix.applyOnTheRight(p,q,j_right);
|
||||
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
|
||||
|
||||
// keep track of the largest diagonal coefficient
|
||||
maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q))));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
|
||||
|
||||
for(Index i = 0; i < m_diagSize; ++i)
|
||||
{
|
||||
// For a complex matrix, some diagonal coefficients might note have been
|
||||
// treated by svd_precondition_2x2_block_to_be_real, and the imaginary part
|
||||
// of some diagonal entry might not be null.
|
||||
if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero)
|
||||
{
|
||||
RealScalar a = abs(m_workMatrix.coeff(i,i));
|
||||
m_singularValues.coeffRef(i) = abs(a);
|
||||
if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
|
||||
}
|
||||
else
|
||||
{
|
||||
// m_workMatrix.coeff(i,i) is already real, no difficulty:
|
||||
RealScalar a = numext::real(m_workMatrix.coeff(i,i));
|
||||
m_singularValues.coeffRef(i) = abs(a);
|
||||
if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i);
|
||||
}
|
||||
}
|
||||
|
||||
m_singularValues *= scale;
|
||||
|
||||
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
|
||||
|
||||
m_nonzeroSingularValues = m_diagSize;
|
||||
for(Index i = 0; i < m_diagSize; i++)
|
||||
{
|
||||
Index pos;
|
||||
RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
|
||||
if(maxRemainingSingularValue == RealScalar(0))
|
||||
{
|
||||
m_nonzeroSingularValues = i;
|
||||
break;
|
||||
}
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
|
||||
if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
|
||||
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \svd_module
|
||||
*
|
||||
* \return the singular value decomposition of \c *this computed by two-sided
|
||||
* Jacobi transformations.
|
||||
*
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return JacobiSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBISVD_H
|
||||
91
3party/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h
Normal file
91
3party/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
* Neither the name of Intel Corporation nor the names of its contributors may
|
||||
be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
********************************************************************************
|
||||
* Content : Eigen bindings to LAPACKe
|
||||
* Singular Value Decomposition - SVD.
|
||||
********************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_JACOBISVD_LAPACKE_H
|
||||
#define EIGEN_JACOBISVD_LAPACKE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \internal Specialization for the data types supported by LAPACKe */
|
||||
|
||||
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
|
||||
template<> inline \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
|
||||
{ \
|
||||
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
|
||||
/*typedef MatrixType::Scalar Scalar;*/ \
|
||||
/*typedef MatrixType::RealScalar RealScalar;*/ \
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions); \
|
||||
\
|
||||
/*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \
|
||||
m_nonzeroSingularValues = m_diagSize; \
|
||||
\
|
||||
lapack_int lda = internal::convert_index<lapack_int>(matrix.outerStride()), ldu, ldvt; \
|
||||
lapack_int matrix_order = LAPACKE_COLROW; \
|
||||
char jobu, jobvt; \
|
||||
LAPACKE_TYPE *u, *vt, dummy; \
|
||||
jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \
|
||||
jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \
|
||||
if (computeU()) { \
|
||||
ldu = internal::convert_index<lapack_int>(m_matrixU.outerStride()); \
|
||||
u = (LAPACKE_TYPE*)m_matrixU.data(); \
|
||||
} else { ldu=1; u=&dummy; }\
|
||||
MatrixType localV; \
|
||||
lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
|
||||
if (computeV()) { \
|
||||
localV.resize(vt_rows, m_cols); \
|
||||
ldvt = internal::convert_index<lapack_int>(localV.outerStride()); \
|
||||
vt = (LAPACKE_TYPE*)localV.data(); \
|
||||
} else { ldvt=1; vt=&dummy; }\
|
||||
Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
|
||||
MatrixType m_temp; m_temp = matrix; \
|
||||
LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
|
||||
if (computeV()) m_matrixV = localV.adjoint(); \
|
||||
/* for(int i=0;i<m_diagSize;i++) if (m_singularValues.coeffRef(i) < precision) { m_nonzeroSingularValues--; m_singularValues.coeffRef(i)=RealScalar(0);}*/ \
|
||||
m_isInitialized = true; \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR)
|
||||
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR)
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBISVD_LAPACKE_H
|
||||
376
3party/eigen/Eigen/src/SVD/SVDBase.h
Normal file
376
3party/eigen/Eigen/src/SVD/SVDBase.h
Normal file
@@ -0,0 +1,376 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SVDBASE_H
|
||||
#define EIGEN_SVDBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
: traits<Derived>
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef SolverStorage StorageKind;
|
||||
typedef int StorageIndex;
|
||||
enum { Flags = 0 };
|
||||
};
|
||||
}
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class SVDBase
|
||||
*
|
||||
* \brief Base class of SVD algorithms
|
||||
*
|
||||
* \tparam Derived the type of the actual SVD decomposition
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
|
||||
* considered well defined.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
* \sa class BDCSVD, class JacobiSVD
|
||||
*/
|
||||
template<typename Derived> class SVDBase
|
||||
: public SolverBase<SVDBase<Derived> >
|
||||
{
|
||||
public:
|
||||
|
||||
template<typename Derived_>
|
||||
friend struct internal::solve_assertion;
|
||||
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \returns the \a U matrix.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
|
||||
*
|
||||
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a U to be computed.
|
||||
*/
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
/** \returns the \a V matrix.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
|
||||
*
|
||||
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a V to be computed.
|
||||
*/
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
/** \returns the vector of singular values.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
|
||||
* returned vector has size \a m. Singular values are always sorted in decreasing order.
|
||||
*/
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
_check_compute_assertions();
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
{
|
||||
_check_compute_assertions();
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
_check_compute_assertions();
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
Derived& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
Derived& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
// this temporary is needed to workaround a MSVC issue
|
||||
Index diagSize = (std::max<Index>)(1,m_diagSize);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: RealScalar(diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const Solve<Derived, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const;
|
||||
#endif
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was successful.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename RhsType, typename DstType>
|
||||
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||
|
||||
template<bool Conjugate, typename RhsType, typename DstType>
|
||||
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
void _check_compute_assertions() const {
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
}
|
||||
|
||||
template<bool Transpose_, typename Rhs>
|
||||
void _check_solve_assertion(const Rhs& b) const {
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(b);
|
||||
_check_compute_assertions();
|
||||
eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
|
||||
eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
|
||||
}
|
||||
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* Default constructor of SVDBase
|
||||
*/
|
||||
SVDBase()
|
||||
: m_info(Success),
|
||||
m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computeFullU(false),
|
||||
m_computeThinU(false),
|
||||
m_computeFullV(false),
|
||||
m_computeThinV(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{
|
||||
check_template_parameters();
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived>
|
||||
template<typename RhsType, typename DstType>
|
||||
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||
Index l_rank = rank();
|
||||
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<bool Conjugate, typename RhsType, typename DstType>
|
||||
void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
// A = U S V^*
|
||||
// So A^{-*} = U S^{-1} V^*
|
||||
// And A^{-T} = U_conj S^{-1} V^T
|
||||
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||
Index l_rank = rank();
|
||||
|
||||
tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename MatrixType>
|
||||
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
}// end namespace
|
||||
|
||||
#endif // EIGEN_SVDBASE_H
|
||||
414
3party/eigen/Eigen/src/SVD/UpperBidiagonalization.h
Normal file
414
3party/eigen/Eigen/src/SVD/UpperBidiagonalization.h
Normal file
@@ -0,0 +1,414 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BIDIAGONALIZATION_H
|
||||
#define EIGEN_BIDIAGONALIZATION_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
|
||||
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
|
||||
|
||||
template<typename _MatrixType> class UpperBidiagonalization
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
|
||||
typedef HouseholderSequence<
|
||||
const MatrixType,
|
||||
const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
|
||||
> HouseholderUSequenceType;
|
||||
typedef HouseholderSequence<
|
||||
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
|
||||
Diagonal<const MatrixType,1>,
|
||||
OnTheRight
|
||||
> HouseholderVSequenceType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
|
||||
*/
|
||||
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
|
||||
|
||||
explicit UpperBidiagonalization(const MatrixType& matrix)
|
||||
: m_householder(matrix.rows(), matrix.cols()),
|
||||
m_bidiagonal(matrix.cols(), matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
UpperBidiagonalization& compute(const MatrixType& matrix);
|
||||
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
|
||||
|
||||
const MatrixType& householder() const { return m_householder; }
|
||||
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
|
||||
|
||||
const HouseholderUSequenceType householderU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
||||
return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
|
||||
}
|
||||
|
||||
const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
|
||||
{
|
||||
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
|
||||
return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
|
||||
.setLength(m_householder.cols()-1)
|
||||
.setShift(1);
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixType m_householder;
|
||||
BidiagonalType m_bidiagonal;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
// Standard upper bidiagonalization without fancy optimizations
|
||||
// This version should be faster for small matrix size
|
||||
template<typename MatrixType>
|
||||
void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
Index rows = mat.rows();
|
||||
Index cols = mat.cols();
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(rows);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
||||
{
|
||||
Index remainingRows = rows - k;
|
||||
Index remainingCols = cols - k - 1;
|
||||
|
||||
// construct left householder transform in-place in A
|
||||
mat.col(k).tail(remainingRows)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
|
||||
// apply householder transform to remaining part of A on the left
|
||||
mat.bottomRightCorner(remainingRows, remainingCols)
|
||||
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
|
||||
|
||||
if(k == cols-1) break;
|
||||
|
||||
// construct right householder transform in-place in mat
|
||||
mat.row(k).tail(remainingCols)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
|
||||
// apply householder transform to remaining part of mat on the left
|
||||
mat.bottomRightCorner(remainingRows-1, remainingCols)
|
||||
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData);
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Helper routine for the block reduction to upper bidiagonal form.
|
||||
*
|
||||
* Let's partition the matrix A:
|
||||
*
|
||||
* | A00 A01 |
|
||||
* A = | |
|
||||
* | A10 A11 |
|
||||
*
|
||||
* This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
|
||||
* and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
|
||||
* is updated using matrix-matrix products:
|
||||
* A22 -= V * Y^T - X * U^T
|
||||
* where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
|
||||
* respectively, and the update matrices X and Y are computed during the reduction.
|
||||
*
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
Index bs,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
|
||||
traits<MatrixType>::Flags & RowMajorBit> > X,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
|
||||
traits<MatrixType>::Flags & RowMajorBit> > Y)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename NumTraits<RealScalar>::Literal Literal;
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
|
||||
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
|
||||
|
||||
Index brows = A.rows();
|
||||
Index bcols = A.cols();
|
||||
|
||||
Scalar tau_u, tau_u_prev(0), tau_v;
|
||||
|
||||
for(Index k = 0; k < bs; ++k)
|
||||
{
|
||||
Index remainingRows = brows - k;
|
||||
Index remainingCols = bcols - k - 1;
|
||||
|
||||
SubMatType X_k1( X.block(k,0, remainingRows,k) );
|
||||
SubMatType V_k1( A.block(k,0, remainingRows,k) );
|
||||
|
||||
// 1 - update the k-th column of A
|
||||
SubColumnType v_k = A.col(k).tail(remainingRows);
|
||||
v_k -= V_k1 * Y.row(k).head(k).adjoint();
|
||||
if(k) v_k -= X_k1 * A.col(k).head(k);
|
||||
|
||||
// 2 - construct left Householder transform in-place
|
||||
v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
|
||||
|
||||
if(k+1<bcols)
|
||||
{
|
||||
SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
|
||||
SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
|
||||
|
||||
// this eases the application of Householder transforAions
|
||||
// A(k,k) will store tau_v later
|
||||
A(k,k) = Scalar(1);
|
||||
|
||||
// 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
|
||||
{
|
||||
SubColumnType y_k( Y.col(k).tail(remainingCols) );
|
||||
|
||||
// let's use the beginning of column k of Y as a temporary vector
|
||||
SubColumnType tmp( Y.col(k).head(k) );
|
||||
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
|
||||
tmp.noalias() = V_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= Y_k.leftCols(k) * tmp;
|
||||
tmp.noalias() = X_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= U_k1.adjoint() * tmp;
|
||||
y_k *= numext::conj(tau_v);
|
||||
}
|
||||
|
||||
// 4 - update k-th row of A (it will become u_k)
|
||||
SubRowType u_k( A.row(k).tail(remainingCols) );
|
||||
u_k = u_k.conjugate();
|
||||
{
|
||||
u_k -= Y_k * A.row(k).head(k+1).adjoint();
|
||||
if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
|
||||
}
|
||||
|
||||
// 5 - construct right Householder transform in-place
|
||||
u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
|
||||
|
||||
// this eases the application of Householder transformations
|
||||
// A(k,k+1) will store tau_u later
|
||||
A(k,k+1) = Scalar(1);
|
||||
|
||||
// 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
|
||||
{
|
||||
SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
|
||||
|
||||
// let's use the beginning of column k of X as a temporary vectors
|
||||
// note that tmp0 and tmp1 overlaps
|
||||
SubColumnType tmp0 ( X.col(k).head(k) ),
|
||||
tmp1 ( X.col(k).head(k+1) );
|
||||
|
||||
x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
|
||||
tmp0.noalias() = U_k1 * u_k.transpose();
|
||||
x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
|
||||
tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
|
||||
x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
|
||||
x_k *= numext::conj(tau_u);
|
||||
tau_u = numext::conj(tau_u);
|
||||
u_k = u_k.conjugate();
|
||||
}
|
||||
|
||||
if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
|
||||
tau_u_prev = tau_u;
|
||||
}
|
||||
else
|
||||
A.coeffRef(k-1,k) = tau_u_prev;
|
||||
|
||||
A.coeffRef(k,k) = tau_v;
|
||||
}
|
||||
|
||||
if(bs<bcols)
|
||||
A.coeffRef(bs-1,bs) = tau_u_prev;
|
||||
|
||||
// update A22
|
||||
if(bcols>bs && brows>bs)
|
||||
{
|
||||
SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
|
||||
SubMatType A10( A.block(bs,0, brows-bs,bs) );
|
||||
SubMatType A01( A.block(0,bs, bs,bcols-bs) );
|
||||
Scalar tmp = A01(bs-1,0);
|
||||
A01(bs-1,0) = Literal(1);
|
||||
A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
|
||||
A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
|
||||
A01(bs-1,0) = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* Implementation of a block-bidiagonal reduction.
|
||||
* It is based on the following paper:
|
||||
* The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
|
||||
* by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
|
||||
* section 3.3
|
||||
*/
|
||||
template<typename MatrixType, typename BidiagType>
|
||||
void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
|
||||
Index maxBlockSize=32,
|
||||
typename MatrixType::Scalar* /*tempData*/ = 0)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
||||
|
||||
Index rows = A.rows();
|
||||
Index cols = A.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
// X and Y are work space
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
Matrix<Scalar,
|
||||
MatrixType::RowsAtCompileTime,
|
||||
Dynamic,
|
||||
StorageOrder,
|
||||
MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
|
||||
Matrix<Scalar,
|
||||
MatrixType::ColsAtCompileTime,
|
||||
Dynamic,
|
||||
StorageOrder,
|
||||
MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
|
||||
Index blockSize = (std::min)(maxBlockSize,size);
|
||||
|
||||
Index k = 0;
|
||||
for(k = 0; k < size; k += blockSize)
|
||||
{
|
||||
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
||||
Index brows = rows - k; // rows of the block
|
||||
Index bcols = cols - k; // columns of the block
|
||||
|
||||
// partition the matrix A:
|
||||
//
|
||||
// | A00 A01 A02 |
|
||||
// | |
|
||||
// A = | A10 A11 A12 |
|
||||
// | |
|
||||
// | A20 A21 A22 |
|
||||
//
|
||||
// where A11 is a bs x bs diagonal block,
|
||||
// and let:
|
||||
// | A11 A12 |
|
||||
// B = | |
|
||||
// | A21 A22 |
|
||||
|
||||
BlockType B = A.block(k,k,brows,bcols);
|
||||
|
||||
// This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
|
||||
// Finally, the algorithm continue on the updated A22.
|
||||
//
|
||||
// However, if B is too small, or A22 empty, then let's use an unblocked strategy
|
||||
if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
|
||||
{
|
||||
upperbidiagonalization_inplace_unblocked(B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
X.data()
|
||||
);
|
||||
break; // We're done
|
||||
}
|
||||
else
|
||||
{
|
||||
upperbidiagonalization_blocked_helper<BlockType>( B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
bs,
|
||||
X.topLeftCorner(brows,bs),
|
||||
Y.topLeftCorner(bcols,bs)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
|
||||
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
|
||||
|
||||
m_householder = matrix;
|
||||
|
||||
ColVectorType temp(rows);
|
||||
|
||||
upperbidiagonalization_inplace_unblocked(m_householder,
|
||||
&(m_bidiagonal.template diagonal<0>().coeffRef(0)),
|
||||
&(m_bidiagonal.template diagonal<1>().coeffRef(0)),
|
||||
temp.data());
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
|
||||
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
|
||||
|
||||
m_householder = matrix;
|
||||
upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
#if 0
|
||||
/** \return the Householder QR decomposition of \c *this.
|
||||
*
|
||||
* \sa class Bidiagonalization
|
||||
*/
|
||||
template<typename Derived>
|
||||
const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::bidiagonalization() const
|
||||
{
|
||||
return UpperBidiagonalization<PlainObject>(eval());
|
||||
}
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BIDIAGONALIZATION_H
|
||||
Reference in New Issue
Block a user