init repo.
This commit is contained in:
110
3party/eigen/Eigen/src/Householder/BlockHouseholder.h
Normal file
110
3party/eigen/Eigen/src/Householder/BlockHouseholder.h
Normal file
@@ -0,0 +1,110 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Vincent Lejeune
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
#define EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
|
||||
// This file contains some helper function to deal with block householder reflectors
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal */
|
||||
// template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
|
||||
// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
|
||||
// {
|
||||
// typedef typename VectorsType::Scalar Scalar;
|
||||
// const Index nbVecs = vectors.cols();
|
||||
// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
|
||||
//
|
||||
// for(Index i = 0; i < nbVecs; i++)
|
||||
// {
|
||||
// Index rs = vectors.rows() - i;
|
||||
// // Warning, note that hCoeffs may alias with vectors.
|
||||
// // It is then necessary to copy it before modifying vectors(i,i).
|
||||
// typename CoeffsType::Scalar h = hCoeffs(i);
|
||||
// // This hack permits to pass trough nested Block<> and Transpose<> expressions.
|
||||
// Scalar *Vii_ptr = const_cast<Scalar*>(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i);
|
||||
// Scalar Vii = *Vii_ptr;
|
||||
// *Vii_ptr = Scalar(1);
|
||||
// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint()
|
||||
// * vectors.col(i).tail(rs);
|
||||
// *Vii_ptr = Vii;
|
||||
// // FIXME add .noalias() once the triangular product can work inplace
|
||||
// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>()
|
||||
// * triFactor.col(i).head(i);
|
||||
// triFactor(i,i) = hCoeffs(i);
|
||||
// }
|
||||
// }
|
||||
|
||||
/** \internal */
|
||||
// This variant avoid modifications in vectors
|
||||
template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
|
||||
void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
|
||||
{
|
||||
const Index nbVecs = vectors.cols();
|
||||
eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
|
||||
|
||||
for(Index i = nbVecs-1; i >=0 ; --i)
|
||||
{
|
||||
Index rs = vectors.rows() - i - 1;
|
||||
Index rt = nbVecs-i-1;
|
||||
|
||||
if(rt>0)
|
||||
{
|
||||
triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint()
|
||||
* vectors.bottomRightCorner(rs, rt).template triangularView<UnitLower>();
|
||||
|
||||
// FIXME use the following line with .noalias() once the triangular product can work inplace
|
||||
// triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView<Upper>();
|
||||
for(Index j=nbVecs-1; j>i; --j)
|
||||
{
|
||||
typename TriangularFactorType::Scalar z = triFactor(i,j);
|
||||
triFactor(i,j) = z * triFactor(j,j);
|
||||
if(nbVecs-j-1>0)
|
||||
triFactor.row(i).tail(nbVecs-j-1) += z * triFactor.row(j).tail(nbVecs-j-1);
|
||||
}
|
||||
|
||||
}
|
||||
triFactor(i,i) = hCoeffs(i);
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* if forward then perform mat = H0 * H1 * H2 * mat
|
||||
* otherwise perform mat = H2 * H1 * H0 * mat
|
||||
*/
|
||||
template<typename MatrixType,typename VectorsType,typename CoeffsType>
|
||||
void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward)
|
||||
{
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, RowMajor> T(nbVecs,nbVecs);
|
||||
|
||||
if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate());
|
||||
const TriangularView<const VectorsType, UnitLower> V(vectors);
|
||||
|
||||
// A -= V T V^* A
|
||||
Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,
|
||||
(VectorsType::MaxColsAtCompileTime==1 && MatrixType::MaxColsAtCompileTime!=1)?RowMajor:ColMajor,
|
||||
VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
|
||||
// FIXME add .noalias() once the triangular product can work inplace
|
||||
if(forward) tmp = T.template triangularView<Upper>() * tmp;
|
||||
else tmp = T.template triangularView<Upper>().adjoint() * tmp;
|
||||
mat.noalias() -= V * tmp;
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
176
3party/eigen/Eigen/src/Householder/Householder.h
Normal file
176
3party/eigen/Eigen/src/Householder/Householder.h
Normal file
@@ -0,0 +1,176 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_HOUSEHOLDER_H
|
||||
#define EIGEN_HOUSEHOLDER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<int n> struct decrement_size
|
||||
{
|
||||
enum {
|
||||
ret = n==Dynamic ? n : n-1
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
/** Computes the elementary reflector H such that:
|
||||
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
||||
* where the transformation H is:
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* and the vector v is:
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
*
|
||||
* The essential part of the vector \c v is stored in *this.
|
||||
*
|
||||
* On output:
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param beta the result of H * \c *this
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void MatrixBase<Derived>::makeHouseholderInPlace(Scalar& tau, RealScalar& beta)
|
||||
{
|
||||
VectorBlock<Derived, internal::decrement_size<Base::SizeAtCompileTime>::ret> essentialPart(derived(), 1, size()-1);
|
||||
makeHouseholder(essentialPart, tau, beta);
|
||||
}
|
||||
|
||||
/** Computes the elementary reflector H such that:
|
||||
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
||||
* where the transformation H is:
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* and the vector v is:
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
*
|
||||
* On output:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param beta the result of H * \c *this
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void MatrixBase<Derived>::makeHouseholder(
|
||||
EssentialPart& essential,
|
||||
Scalar& tau,
|
||||
RealScalar& beta) const
|
||||
{
|
||||
using std::sqrt;
|
||||
using numext::conj;
|
||||
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
|
||||
VectorBlock<const Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size()-1);
|
||||
|
||||
RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
|
||||
Scalar c0 = coeff(0);
|
||||
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
essential.setZero();
|
||||
}
|
||||
else
|
||||
{
|
||||
beta = sqrt(numext::abs2(c0) + tailSqNorm);
|
||||
if (numext::real(c0)>=RealScalar(0))
|
||||
beta = -beta;
|
||||
essential = tail / (c0 - beta);
|
||||
tau = conj((beta - c0) / beta);
|
||||
}
|
||||
}
|
||||
|
||||
/** Apply the elementary reflector H given by
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* with
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
* from the left to a vector or matrix.
|
||||
*
|
||||
* On input:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param workspace a pointer to working space with at least
|
||||
* this->cols() entries
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void MatrixBase<Derived>::applyHouseholderOnTheLeft(
|
||||
const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace)
|
||||
{
|
||||
if(rows() == 1)
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
{
|
||||
Map<typename internal::plain_row_type<PlainObject>::type> tmp(workspace,cols());
|
||||
Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows()-1, cols());
|
||||
tmp.noalias() = essential.adjoint() * bottom;
|
||||
tmp += this->row(0);
|
||||
this->row(0) -= tau * tmp;
|
||||
bottom.noalias() -= tau * essential * tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/** Apply the elementary reflector H given by
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* with
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
* from the right to a vector or matrix.
|
||||
*
|
||||
* On input:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param workspace a pointer to working space with at least
|
||||
* this->rows() entries
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
||||
* MatrixBase::applyHouseholderOnTheLeft()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void MatrixBase<Derived>::applyHouseholderOnTheRight(
|
||||
const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace)
|
||||
{
|
||||
if(cols() == 1)
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
{
|
||||
Map<typename internal::plain_col_type<PlainObject>::type> tmp(workspace,rows());
|
||||
Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(), cols()-1);
|
||||
tmp.noalias() = right * essential;
|
||||
tmp += this->col(0);
|
||||
this->col(0) -= tau * tmp;
|
||||
right.noalias() -= tau * tmp * essential.adjoint();
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_H
|
||||
545
3party/eigen/Eigen/src/Householder/HouseholderSequence.h
Normal file
545
3party/eigen/Eigen/src/Householder/HouseholderSequence.h
Normal file
@@ -0,0 +1,545 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Householder_Module
|
||||
* \householder_module
|
||||
* \class HouseholderSequence
|
||||
* \brief Sequence of Householder reflections acting on subspaces with decreasing size
|
||||
* \tparam VectorsType type of matrix containing the Householder vectors
|
||||
* \tparam CoeffsType type of vector containing the Householder coefficients
|
||||
* \tparam Side either OnTheLeft (the default) or OnTheRight
|
||||
*
|
||||
* This class represents a product sequence of Householder reflections where the first Householder reflection
|
||||
* acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
|
||||
* the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
|
||||
* spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
|
||||
* one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
|
||||
* are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
|
||||
* HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
|
||||
* and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
|
||||
*
|
||||
* More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
|
||||
* form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
|
||||
* v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
|
||||
* v_i \f$ is a vector of the form
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
|
||||
*
|
||||
* Typical usages are listed below, where H is a HouseholderSequence:
|
||||
* \code
|
||||
* A.applyOnTheRight(H); // A = A * H
|
||||
* A.applyOnTheLeft(H); // A = H * A
|
||||
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
|
||||
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
|
||||
* MatrixXd Q = H; // conversion to a dense matrix
|
||||
* \endcode
|
||||
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
|
||||
*
|
||||
* See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef typename VectorsType::Scalar Scalar;
|
||||
typedef typename VectorsType::StorageIndex StorageIndex;
|
||||
typedef typename VectorsType::StorageKind StorageKind;
|
||||
enum {
|
||||
RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
|
||||
: traits<VectorsType>::ColsAtCompileTime,
|
||||
ColsAtCompileTime = RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
|
||||
: traits<VectorsType>::MaxColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MaxRowsAtCompileTime,
|
||||
Flags = 0
|
||||
};
|
||||
};
|
||||
|
||||
struct HouseholderSequenceShape {};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
: public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef HouseholderSequenceShape Shape;
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct hseq_side_dependent_impl
|
||||
{
|
||||
typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
|
||||
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
|
||||
static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
||||
{
|
||||
Index start = k+1+h.m_shift;
|
||||
return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
|
||||
{
|
||||
typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
|
||||
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
|
||||
static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
||||
{
|
||||
Index start = k+1+h.m_shift;
|
||||
return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
|
||||
{
|
||||
typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
|
||||
ResultScalar;
|
||||
typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
|
||||
0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
|
||||
: public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
|
||||
|
||||
public:
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
|
||||
|
||||
typedef HouseholderSequence<
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
|
||||
VectorsType>::type,
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
|
||||
CoeffsType>::type,
|
||||
Side
|
||||
> ConjugateReturnType;
|
||||
|
||||
typedef HouseholderSequence<
|
||||
VectorsType,
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
|
||||
CoeffsType>::type,
|
||||
Side
|
||||
> AdjointReturnType;
|
||||
|
||||
typedef HouseholderSequence<
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
|
||||
VectorsType>::type,
|
||||
CoeffsType,
|
||||
Side
|
||||
> TransposeReturnType;
|
||||
|
||||
typedef HouseholderSequence<
|
||||
typename internal::add_const<VectorsType>::type,
|
||||
typename internal::add_const<CoeffsType>::type,
|
||||
Side
|
||||
> ConstHouseholderSequence;
|
||||
|
||||
/** \brief Constructor.
|
||||
* \param[in] v %Matrix containing the essential parts of the Householder vectors
|
||||
* \param[in] h Vector containing the Householder coefficients
|
||||
*
|
||||
* Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
|
||||
* i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
|
||||
* Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
|
||||
* i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
|
||||
* Householder reflections as there are columns.
|
||||
*
|
||||
* \note The %HouseholderSequence object stores \p v and \p h by reference.
|
||||
*
|
||||
* Example: \include HouseholderSequence_HouseholderSequence.cpp
|
||||
* Output: \verbinclude HouseholderSequence_HouseholderSequence.out
|
||||
*
|
||||
* \sa setLength(), setShift()
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
HouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
: m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()),
|
||||
m_shift(0)
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Copy constructor. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
HouseholderSequence(const HouseholderSequence& other)
|
||||
: m_vectors(other.m_vectors),
|
||||
m_coeffs(other.m_coeffs),
|
||||
m_reverse(other.m_reverse),
|
||||
m_length(other.m_length),
|
||||
m_shift(other.m_shift)
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Number of rows of transformation viewed as a matrix.
|
||||
* \returns Number of rows
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
|
||||
|
||||
/** \brief Number of columns of transformation viewed as a matrix.
|
||||
* \returns Number of columns
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
Index cols() const EIGEN_NOEXCEPT { return rows(); }
|
||||
|
||||
/** \brief Essential part of a Householder vector.
|
||||
* \param[in] k Index of Householder reflection
|
||||
* \returns Vector containing non-trivial entries of k-th Householder vector
|
||||
*
|
||||
* This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
|
||||
* length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
|
||||
* passed to the constructor.
|
||||
*
|
||||
* \sa setShift(), shift()
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
const EssentialVectorType essentialVector(Index k) const
|
||||
{
|
||||
eigen_assert(k >= 0 && k < m_length);
|
||||
return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
|
||||
}
|
||||
|
||||
/** \brief %Transpose of the Householder sequence. */
|
||||
TransposeReturnType transpose() const
|
||||
{
|
||||
return TransposeReturnType(m_vectors.conjugate(), m_coeffs)
|
||||
.setReverseFlag(!m_reverse)
|
||||
.setLength(m_length)
|
||||
.setShift(m_shift);
|
||||
}
|
||||
|
||||
/** \brief Complex conjugate of the Householder sequence. */
|
||||
ConjugateReturnType conjugate() const
|
||||
{
|
||||
return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
|
||||
.setReverseFlag(m_reverse)
|
||||
.setLength(m_length)
|
||||
.setShift(m_shift);
|
||||
}
|
||||
|
||||
/** \returns an expression of the complex conjugate of \c *this if Cond==true,
|
||||
* returns \c *this otherwise.
|
||||
*/
|
||||
template<bool Cond>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type
|
||||
conjugateIf() const
|
||||
{
|
||||
typedef typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type ReturnType;
|
||||
return ReturnType(m_vectors.template conjugateIf<Cond>(), m_coeffs.template conjugateIf<Cond>());
|
||||
}
|
||||
|
||||
/** \brief Adjoint (conjugate transpose) of the Householder sequence. */
|
||||
AdjointReturnType adjoint() const
|
||||
{
|
||||
return AdjointReturnType(m_vectors, m_coeffs.conjugate())
|
||||
.setReverseFlag(!m_reverse)
|
||||
.setLength(m_length)
|
||||
.setShift(m_shift);
|
||||
}
|
||||
|
||||
/** \brief Inverse of the Householder sequence (equals the adjoint). */
|
||||
AdjointReturnType inverse() const { return adjoint(); }
|
||||
|
||||
/** \internal */
|
||||
template<typename DestType>
|
||||
inline EIGEN_DEVICE_FUNC
|
||||
void evalTo(DestType& dst) const
|
||||
{
|
||||
Matrix<Scalar, DestType::RowsAtCompileTime, 1,
|
||||
AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
|
||||
evalTo(dst, workspace);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void evalTo(Dest& dst, Workspace& workspace) const
|
||||
{
|
||||
workspace.resize(rows());
|
||||
Index vecs = m_length;
|
||||
if(internal::is_same_dense(dst,m_vectors))
|
||||
{
|
||||
// in-place
|
||||
dst.diagonal().setOnes();
|
||||
dst.template triangularView<StrictlyUpper>().setZero();
|
||||
for(Index k = vecs-1; k >= 0; --k)
|
||||
{
|
||||
Index cornerSize = rows() - k - m_shift;
|
||||
if(m_reverse)
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
else
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
|
||||
// clear the off diagonal vector
|
||||
dst.col(k).tail(rows()-k-1).setZero();
|
||||
}
|
||||
// clear the remaining columns if needed
|
||||
for(Index k = 0; k<cols()-vecs ; ++k)
|
||||
dst.col(k).tail(rows()-k-1).setZero();
|
||||
}
|
||||
else if(m_length>BlockSize)
|
||||
{
|
||||
dst.setIdentity(rows(), rows());
|
||||
if(m_reverse)
|
||||
applyThisOnTheLeft(dst,workspace,true);
|
||||
else
|
||||
applyThisOnTheLeft(dst,workspace,true);
|
||||
}
|
||||
else
|
||||
{
|
||||
dst.setIdentity(rows(), rows());
|
||||
for(Index k = vecs-1; k >= 0; --k)
|
||||
{
|
||||
Index cornerSize = rows() - k - m_shift;
|
||||
if(m_reverse)
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
else
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
||||
{
|
||||
Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
|
||||
applyThisOnTheRight(dst, workspace);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
|
||||
{
|
||||
workspace.resize(dst.rows());
|
||||
for(Index k = 0; k < m_length; ++k)
|
||||
{
|
||||
Index actual_k = m_reverse ? m_length-k-1 : k;
|
||||
dst.rightCols(rows()-m_shift-actual_k)
|
||||
.applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const
|
||||
{
|
||||
Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace;
|
||||
applyThisOnTheLeft(dst, workspace, inputIsIdentity);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const
|
||||
{
|
||||
if(inputIsIdentity && m_reverse)
|
||||
inputIsIdentity = false;
|
||||
// if the entries are large enough, then apply the reflectors by block
|
||||
if(m_length>=BlockSize && dst.cols()>1)
|
||||
{
|
||||
// Make sure we have at least 2 useful blocks, otherwise it is point-less:
|
||||
Index blockSize = m_length<Index(2*BlockSize) ? (m_length+1)/2 : Index(BlockSize);
|
||||
for(Index i = 0; i < m_length; i+=blockSize)
|
||||
{
|
||||
Index end = m_reverse ? (std::min)(m_length,i+blockSize) : m_length-i;
|
||||
Index k = m_reverse ? i : (std::max)(Index(0),end-blockSize);
|
||||
Index bs = end-k;
|
||||
Index start = k + m_shift;
|
||||
|
||||
typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType;
|
||||
SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start,
|
||||
Side==OnTheRight ? start : k,
|
||||
Side==OnTheRight ? bs : m_vectors.rows()-start,
|
||||
Side==OnTheRight ? m_vectors.cols()-start : bs);
|
||||
typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1);
|
||||
|
||||
Index dstStart = dst.rows()-rows()+m_shift+k;
|
||||
Index dstRows = rows()-m_shift-k;
|
||||
Block<Dest,Dynamic,Dynamic> sub_dst(dst,
|
||||
dstStart,
|
||||
inputIsIdentity ? dstStart : 0,
|
||||
dstRows,
|
||||
inputIsIdentity ? dstRows : dst.cols());
|
||||
apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
workspace.resize(dst.cols());
|
||||
for(Index k = 0; k < m_length; ++k)
|
||||
{
|
||||
Index actual_k = m_reverse ? k : m_length-k-1;
|
||||
Index dstStart = rows()-m_shift-actual_k;
|
||||
dst.bottomRightCorner(dstStart, inputIsIdentity ? dstStart : dst.cols())
|
||||
.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief Computes the product of a Householder sequence with a matrix.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
|
||||
* and \f$ M \f$ is the matrix \p other.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
|
||||
res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
|
||||
applyThisOnTheLeft(res, internal::is_identity<OtherDerived>::value && res.rows()==res.cols());
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
|
||||
|
||||
/** \brief Sets the length of the Householder sequence.
|
||||
* \param [in] length New value for the length.
|
||||
*
|
||||
* By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
|
||||
* to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
|
||||
* is smaller. After this function is called, the length equals \p length.
|
||||
*
|
||||
* \sa length()
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
HouseholderSequence& setLength(Index length)
|
||||
{
|
||||
m_length = length;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Sets the shift of the Householder sequence.
|
||||
* \param [in] shift New value for the shift.
|
||||
*
|
||||
* By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
|
||||
* column of the matrix \p v passed to the constructor corresponds to the i-th Householder
|
||||
* reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
|
||||
* H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
|
||||
* Householder reflection.
|
||||
*
|
||||
* \sa shift()
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
HouseholderSequence& setShift(Index shift)
|
||||
{
|
||||
m_shift = shift;
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
|
||||
|
||||
/* Necessary for .adjoint() and .conjugate() */
|
||||
template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
|
||||
|
||||
protected:
|
||||
|
||||
/** \internal
|
||||
* \brief Sets the reverse flag.
|
||||
* \param [in] reverse New value of the reverse flag.
|
||||
*
|
||||
* By default, the reverse flag is not set. If the reverse flag is set, then this object represents
|
||||
* \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
|
||||
* \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$.
|
||||
*
|
||||
* \sa reverseFlag(), transpose(), adjoint()
|
||||
*/
|
||||
HouseholderSequence& setReverseFlag(bool reverse)
|
||||
{
|
||||
m_reverse = reverse;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */
|
||||
|
||||
typename VectorsType::Nested m_vectors;
|
||||
typename CoeffsType::Nested m_coeffs;
|
||||
bool m_reverse;
|
||||
Index m_length;
|
||||
Index m_shift;
|
||||
enum { BlockSize = 48 };
|
||||
};
|
||||
|
||||
/** \brief Computes the product of a matrix with a Householder sequence.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \param[in] h %HouseholderSequence being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
|
||||
* Householder sequence represented by \p h.
|
||||
*/
|
||||
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
|
||||
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
|
||||
{
|
||||
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
|
||||
res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
|
||||
h.applyThisOnTheRight(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
|
||||
}
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
* \details This function differs from householderSequence() in that the template argument \p OnTheSide of
|
||||
* the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
Reference in New Issue
Block a user