454 lines
15 KiB
C
454 lines
15 KiB
C
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||
|
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_INCOMPLETE_LUT_H
|
||
|
#define EIGEN_INCOMPLETE_LUT_H
|
||
|
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
/** \internal
|
||
|
* Compute a quick-sort split of a vector
|
||
|
* On output, the vector row is permuted such that its elements satisfy
|
||
|
* abs(row(i)) >= abs(row(ncut)) if i<ncut
|
||
|
* abs(row(i)) <= abs(row(ncut)) if i>ncut
|
||
|
* \param row The vector of values
|
||
|
* \param ind The array of index for the elements in @p row
|
||
|
* \param ncut The number of largest elements to keep
|
||
|
**/
|
||
|
template <typename VectorV, typename VectorI>
|
||
|
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
||
|
{
|
||
|
typedef typename VectorV::RealScalar RealScalar;
|
||
|
using std::swap;
|
||
|
using std::abs;
|
||
|
Index mid;
|
||
|
Index n = row.size(); /* length of the vector */
|
||
|
Index first, last ;
|
||
|
|
||
|
ncut--; /* to fit the zero-based indices */
|
||
|
first = 0;
|
||
|
last = n-1;
|
||
|
if (ncut < first || ncut > last ) return 0;
|
||
|
|
||
|
do {
|
||
|
mid = first;
|
||
|
RealScalar abskey = abs(row(mid));
|
||
|
for (Index j = first + 1; j <= last; j++) {
|
||
|
if ( abs(row(j)) > abskey) {
|
||
|
++mid;
|
||
|
swap(row(mid), row(j));
|
||
|
swap(ind(mid), ind(j));
|
||
|
}
|
||
|
}
|
||
|
/* Interchange for the pivot element */
|
||
|
swap(row(mid), row(first));
|
||
|
swap(ind(mid), ind(first));
|
||
|
|
||
|
if (mid > ncut) last = mid - 1;
|
||
|
else if (mid < ncut ) first = mid + 1;
|
||
|
} while (mid != ncut );
|
||
|
|
||
|
return 0; /* mid is equal to ncut */
|
||
|
}
|
||
|
|
||
|
}// end namespace internal
|
||
|
|
||
|
/** \ingroup IterativeLinearSolvers_Module
|
||
|
* \class IncompleteLUT
|
||
|
* \brief Incomplete LU factorization with dual-threshold strategy
|
||
|
*
|
||
|
* \implsparsesolverconcept
|
||
|
*
|
||
|
* During the numerical factorization, two dropping rules are used :
|
||
|
* 1) any element whose magnitude is less than some tolerance is dropped.
|
||
|
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
||
|
* by the average magnitude of all the original elements in the current row.
|
||
|
* 2) After the elimination of the row, only the @p fill largest elements in
|
||
|
* the L part and the @p fill largest elements in the U part are kept
|
||
|
* (in addition to the diagonal element ). Note that @p fill is computed from
|
||
|
* the input parameter @p fillfactor which is used the ratio to control the fill_in
|
||
|
* relatively to the initial number of nonzero elements.
|
||
|
*
|
||
|
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
|
||
|
* and when @p fill=n/2 with @p droptol being different to zero.
|
||
|
*
|
||
|
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
|
||
|
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
|
||
|
*
|
||
|
* NOTE : The following implementation is derived from the ILUT implementation
|
||
|
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
|
||
|
* released under the terms of the GNU LGPL:
|
||
|
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
|
||
|
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
|
||
|
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
|
||
|
* http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
|
||
|
* alternatively, on GMANE:
|
||
|
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
|
||
|
*/
|
||
|
template <typename _Scalar, typename _StorageIndex = int>
|
||
|
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> >
|
||
|
{
|
||
|
protected:
|
||
|
typedef SparseSolverBase<IncompleteLUT> Base;
|
||
|
using Base::m_isInitialized;
|
||
|
public:
|
||
|
typedef _Scalar Scalar;
|
||
|
typedef _StorageIndex StorageIndex;
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||
|
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||
|
typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType;
|
||
|
|
||
|
enum {
|
||
|
ColsAtCompileTime = Dynamic,
|
||
|
MaxColsAtCompileTime = Dynamic
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
|
||
|
IncompleteLUT()
|
||
|
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
|
||
|
m_analysisIsOk(false), m_factorizationIsOk(false)
|
||
|
{}
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
|
||
|
: m_droptol(droptol),m_fillfactor(fillfactor),
|
||
|
m_analysisIsOk(false),m_factorizationIsOk(false)
|
||
|
{
|
||
|
eigen_assert(fillfactor != 0);
|
||
|
compute(mat);
|
||
|
}
|
||
|
|
||
|
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
|
||
|
|
||
|
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
|
||
|
|
||
|
/** \brief Reports whether previous computation was successful.
|
||
|
*
|
||
|
* \returns \c Success if computation was successful,
|
||
|
* \c NumericalIssue if the matrix.appears to be negative.
|
||
|
*/
|
||
|
ComputationInfo info() const
|
||
|
{
|
||
|
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
||
|
return m_info;
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
void analyzePattern(const MatrixType& amat);
|
||
|
|
||
|
template<typename MatrixType>
|
||
|
void factorize(const MatrixType& amat);
|
||
|
|
||
|
/**
|
||
|
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
||
|
* No pivoting is done in this version
|
||
|
*
|
||
|
**/
|
||
|
template<typename MatrixType>
|
||
|
IncompleteLUT& compute(const MatrixType& amat)
|
||
|
{
|
||
|
analyzePattern(amat);
|
||
|
factorize(amat);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void setDroptol(const RealScalar& droptol);
|
||
|
void setFillfactor(int fillfactor);
|
||
|
|
||
|
template<typename Rhs, typename Dest>
|
||
|
void _solve_impl(const Rhs& b, Dest& x) const
|
||
|
{
|
||
|
x = m_Pinv * b;
|
||
|
x = m_lu.template triangularView<UnitLower>().solve(x);
|
||
|
x = m_lu.template triangularView<Upper>().solve(x);
|
||
|
x = m_P * x;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
|
||
|
/** keeps off-diagonal entries; drops diagonal entries */
|
||
|
struct keep_diag {
|
||
|
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
|
||
|
{
|
||
|
return row!=col;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
protected:
|
||
|
|
||
|
FactorType m_lu;
|
||
|
RealScalar m_droptol;
|
||
|
int m_fillfactor;
|
||
|
bool m_analysisIsOk;
|
||
|
bool m_factorizationIsOk;
|
||
|
ComputationInfo m_info;
|
||
|
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // Fill-reducing permutation
|
||
|
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // Inverse permutation
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set control parameter droptol
|
||
|
* \param droptol Drop any element whose magnitude is less than this tolerance
|
||
|
**/
|
||
|
template<typename Scalar, typename StorageIndex>
|
||
|
void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol)
|
||
|
{
|
||
|
this->m_droptol = droptol;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set control parameter fillfactor
|
||
|
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
||
|
**/
|
||
|
template<typename Scalar, typename StorageIndex>
|
||
|
void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
|
||
|
{
|
||
|
this->m_fillfactor = fillfactor;
|
||
|
}
|
||
|
|
||
|
template <typename Scalar, typename StorageIndex>
|
||
|
template<typename _MatrixType>
|
||
|
void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
|
||
|
{
|
||
|
// Compute the Fill-reducing permutation
|
||
|
// Since ILUT does not perform any numerical pivoting,
|
||
|
// it is highly preferable to keep the diagonal through symmetric permutations.
|
||
|
// To this end, let's symmetrize the pattern and perform AMD on it.
|
||
|
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
|
||
|
SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
|
||
|
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
||
|
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be preferred...
|
||
|
SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
|
||
|
AMDOrdering<StorageIndex> ordering;
|
||
|
ordering(AtA,m_P);
|
||
|
m_Pinv = m_P.inverse(); // cache the inverse permutation
|
||
|
m_analysisIsOk = true;
|
||
|
m_factorizationIsOk = false;
|
||
|
m_isInitialized = true;
|
||
|
}
|
||
|
|
||
|
template <typename Scalar, typename StorageIndex>
|
||
|
template<typename _MatrixType>
|
||
|
void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat)
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
using std::swap;
|
||
|
using std::abs;
|
||
|
using internal::convert_index;
|
||
|
|
||
|
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
||
|
Index n = amat.cols(); // Size of the matrix
|
||
|
m_lu.resize(n,n);
|
||
|
// Declare Working vectors and variables
|
||
|
Vector u(n) ; // real values of the row -- maximum size is n --
|
||
|
VectorI ju(n); // column position of the values in u -- maximum size is n
|
||
|
VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
|
||
|
|
||
|
// Apply the fill-reducing permutation
|
||
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||
|
SparseMatrix<Scalar,RowMajor, StorageIndex> mat;
|
||
|
mat = amat.twistedBy(m_Pinv);
|
||
|
|
||
|
// Initialization
|
||
|
jr.fill(-1);
|
||
|
ju.fill(0);
|
||
|
u.fill(0);
|
||
|
|
||
|
// number of largest elements to keep in each row:
|
||
|
Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1;
|
||
|
if (fill_in > n) fill_in = n;
|
||
|
|
||
|
// number of largest nonzero elements to keep in the L and the U part of the current row:
|
||
|
Index nnzL = fill_in/2;
|
||
|
Index nnzU = nnzL;
|
||
|
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||
|
|
||
|
// global loop over the rows of the sparse matrix
|
||
|
for (Index ii = 0; ii < n; ii++)
|
||
|
{
|
||
|
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
|
||
|
|
||
|
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
|
||
|
Index sizel = 0; // number of nonzero elements in the lower part of the current row
|
||
|
ju(ii) = convert_index<StorageIndex>(ii);
|
||
|
u(ii) = 0;
|
||
|
jr(ii) = convert_index<StorageIndex>(ii);
|
||
|
RealScalar rownorm = 0;
|
||
|
|
||
|
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
|
||
|
for (; j_it; ++j_it)
|
||
|
{
|
||
|
Index k = j_it.index();
|
||
|
if (k < ii)
|
||
|
{
|
||
|
// copy the lower part
|
||
|
ju(sizel) = convert_index<StorageIndex>(k);
|
||
|
u(sizel) = j_it.value();
|
||
|
jr(k) = convert_index<StorageIndex>(sizel);
|
||
|
++sizel;
|
||
|
}
|
||
|
else if (k == ii)
|
||
|
{
|
||
|
u(ii) = j_it.value();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// copy the upper part
|
||
|
Index jpos = ii + sizeu;
|
||
|
ju(jpos) = convert_index<StorageIndex>(k);
|
||
|
u(jpos) = j_it.value();
|
||
|
jr(k) = convert_index<StorageIndex>(jpos);
|
||
|
++sizeu;
|
||
|
}
|
||
|
rownorm += numext::abs2(j_it.value());
|
||
|
}
|
||
|
|
||
|
// 2 - detect possible zero row
|
||
|
if(rownorm==0)
|
||
|
{
|
||
|
m_info = NumericalIssue;
|
||
|
return;
|
||
|
}
|
||
|
// Take the 2-norm of the current row as a relative tolerance
|
||
|
rownorm = sqrt(rownorm);
|
||
|
|
||
|
// 3 - eliminate the previous nonzero rows
|
||
|
Index jj = 0;
|
||
|
Index len = 0;
|
||
|
while (jj < sizel)
|
||
|
{
|
||
|
// In order to eliminate in the correct order,
|
||
|
// we must select first the smallest column index among ju(jj:sizel)
|
||
|
Index k;
|
||
|
Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
|
||
|
k += jj;
|
||
|
if (minrow != ju(jj))
|
||
|
{
|
||
|
// swap the two locations
|
||
|
Index j = ju(jj);
|
||
|
swap(ju(jj), ju(k));
|
||
|
jr(minrow) = convert_index<StorageIndex>(jj);
|
||
|
jr(j) = convert_index<StorageIndex>(k);
|
||
|
swap(u(jj), u(k));
|
||
|
}
|
||
|
// Reset this location
|
||
|
jr(minrow) = -1;
|
||
|
|
||
|
// Start elimination
|
||
|
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||
|
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||
|
eigen_internal_assert(ki_it && ki_it.col()==minrow);
|
||
|
Scalar fact = u(jj) / ki_it.value();
|
||
|
|
||
|
// drop too small elements
|
||
|
if(abs(fact) <= m_droptol)
|
||
|
{
|
||
|
jj++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// linear combination of the current row ii and the row minrow
|
||
|
++ki_it;
|
||
|
for (; ki_it; ++ki_it)
|
||
|
{
|
||
|
Scalar prod = fact * ki_it.value();
|
||
|
Index j = ki_it.index();
|
||
|
Index jpos = jr(j);
|
||
|
if (jpos == -1) // fill-in element
|
||
|
{
|
||
|
Index newpos;
|
||
|
if (j >= ii) // dealing with the upper part
|
||
|
{
|
||
|
newpos = ii + sizeu;
|
||
|
sizeu++;
|
||
|
eigen_internal_assert(sizeu<=n);
|
||
|
}
|
||
|
else // dealing with the lower part
|
||
|
{
|
||
|
newpos = sizel;
|
||
|
sizel++;
|
||
|
eigen_internal_assert(sizel<=ii);
|
||
|
}
|
||
|
ju(newpos) = convert_index<StorageIndex>(j);
|
||
|
u(newpos) = -prod;
|
||
|
jr(j) = convert_index<StorageIndex>(newpos);
|
||
|
}
|
||
|
else
|
||
|
u(jpos) -= prod;
|
||
|
}
|
||
|
// store the pivot element
|
||
|
u(len) = fact;
|
||
|
ju(len) = convert_index<StorageIndex>(minrow);
|
||
|
++len;
|
||
|
|
||
|
jj++;
|
||
|
} // end of the elimination on the row ii
|
||
|
|
||
|
// reset the upper part of the pointer jr to zero
|
||
|
for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
|
||
|
|
||
|
// 4 - partially sort and insert the elements in the m_lu matrix
|
||
|
|
||
|
// sort the L-part of the row
|
||
|
sizel = len;
|
||
|
len = (std::min)(sizel, nnzL);
|
||
|
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
|
||
|
typename VectorI::SegmentReturnType jul(ju.segment(0, sizel));
|
||
|
internal::QuickSplit(ul, jul, len);
|
||
|
|
||
|
// store the largest m_fill elements of the L part
|
||
|
m_lu.startVec(ii);
|
||
|
for(Index k = 0; k < len; k++)
|
||
|
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||
|
|
||
|
// store the diagonal element
|
||
|
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
|
||
|
if (u(ii) == Scalar(0))
|
||
|
u(ii) = sqrt(m_droptol) * rownorm;
|
||
|
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||
|
|
||
|
// sort the U-part of the row
|
||
|
// apply the dropping rule first
|
||
|
len = 0;
|
||
|
for(Index k = 1; k < sizeu; k++)
|
||
|
{
|
||
|
if(abs(u(ii+k)) > m_droptol * rownorm )
|
||
|
{
|
||
|
++len;
|
||
|
u(ii + len) = u(ii + k);
|
||
|
ju(ii + len) = ju(ii + k);
|
||
|
}
|
||
|
}
|
||
|
sizeu = len + 1; // +1 to take into account the diagonal element
|
||
|
len = (std::min)(sizeu, nnzU);
|
||
|
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||
|
typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||
|
internal::QuickSplit(uu, juu, len);
|
||
|
|
||
|
// store the largest elements of the U part
|
||
|
for(Index k = ii + 1; k < ii + len; k++)
|
||
|
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||
|
}
|
||
|
m_lu.finalize();
|
||
|
m_lu.makeCompressed();
|
||
|
|
||
|
m_factorizationIsOk = true;
|
||
|
m_info = Success;
|
||
|
}
|
||
|
|
||
|
} // end namespace Eigen
|
||
|
|
||
|
#endif // EIGEN_INCOMPLETE_LUT_H
|