sled/3party/cpplinq/util.hpp

233 lines
7.0 KiB
C++
Raw Normal View History

2024-03-14 20:50:17 +08:00
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#if !defined(CPPLINQ_LINQ_UTIL_HPP)
#define CPPLINQ_LINQ_UTIL_HPP
#pragma once
namespace cpplinq { namespace util {
template <class Container>
struct container_traits {
typedef typename Container::iterator iterator;
typedef typename std::iterator_traits<iterator>::value_type value_type;
typedef typename std::iterator_traits<iterator>::iterator_category iterator_category;
// TODO: conservative definition for now.
enum { is_writable_iterator =
std::is_reference<typename std::iterator_traits<iterator>::reference>::value
&& std::is_same<typename std::remove_cv<value_type>::type,
typename std::remove_cv<typename std::remove_reference<typename std::iterator_traits<iterator>::reference>::type>::type>::value
};
};
template <>
struct container_traits<int>;
template <class Container>
struct container_traits<Container&>
: container_traits<Container>
{};
template <class Container>
struct container_traits<const Container>
: container_traits<Container>
{
typedef typename Container::const_iterator iterator;
};
// Note: returns false if no partial order exists between two
// particular iterator categories, such as with some of the boost categories
template <class Cat1, class Cat2>
struct less_or_equal_iterator_category
{
private:
typedef char yes;
typedef struct { char c1,c2; } no;
static yes invoke(Cat1);
static no invoke(...);
public:
enum { value = (sizeof(invoke(Cat2())) == sizeof(yes)) };
};
// Return the weaker of the two iterator categories. Make sure
// a non-standard category is in the second argument position, as
// this metafunction will default to the first value if the order is undefined
template <class Cat1, class Cat2>
struct min_iterator_category
: std::conditional<
less_or_equal_iterator_category<Cat2, Cat1>::value,
Cat2,
Cat1>
{
};
#if 0
#define CppLinq_GET_ITERATOR_TYPE(TContainer) \
decltype(begin(static_cast<TContainer*>(0)))
#define CppLinq_GET_CONST_ITERATOR_TYPE(TContainer) \
decltype(begin(static_cast<const TContainer*>(0)))
#else
#define CppLinq_GET_ITERATOR_TYPE(TContainer) \
typename ::cpplinq::util::container_traits<TContainer>::iterator
#define CppLinq_GET_CONST_ITERATOR_TYPE(TContainer) \
typename ::cpplinq::util::container_traits<TContainer>::const_iterator
#endif
// VC10's std::tr1::result_of is busted with lambdas. use decltype instead on vc10 and later
#if defined(_MSC_VER) && _MSC_VER >= 1600
namespace detail {
template <class T> T instance();
};
template <class Fn> struct result_of;
template <class Fn>
struct result_of<Fn()> {
typedef decltype(detail::instance<Fn>()()) type;
};
template <class Fn, class A0>
struct result_of<Fn(A0)> {
typedef decltype(detail::instance<Fn>()(detail::instance<A0>())) type;
};
template <class Fn, class A0, class A1>
struct result_of<Fn(A0,A1)> {
typedef decltype(detail::instance<Fn>()(detail::instance<A0>(),
detail::instance<A1>())) type;
};
template <class Fn, class A0, class A1, class A2>
struct result_of<Fn(A0,A1,A2)> {
typedef decltype(detail::instance<Fn>()(detail::instance<A0>(),
detail::instance<A1>(),
detail::instance<A2>())) type;
};
template <class Fn, class A0, class A1, class A2, class A3>
struct result_of<Fn(A0,A1,A2,A3)> {
typedef decltype(detail::instance<Fn>()(detail::instance<A0>(),
detail::instance<A1>(),
detail::instance<A2>(),
detail::instance<A3>())) type;
};
#elif defined(_MSC_VER)
template <class T>
struct result_of<T> : std::tr1::result_of<T> {};
#else
using std::result_of;
#endif
template<class Type>
struct identity
{
typedef Type type;
Type operator()(const Type& left) const {return left;}
};
// faux pointer proxy for iterators that dereference to a value rather than reference, such as selectors
template <class T>
struct value_ptr
{
T value;
value_ptr(const T& value) : value(value)
{}
value_ptr(const T* pvalue) : value(*pvalue)
{}
const T* operator->()
{
return &value;
}
};
template <class T>
class maybe
{
bool is_set;
typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type
storage;
public:
maybe()
: is_set(false)
{
}
maybe(T value)
: is_set(false)
{
new (reinterpret_cast<T*>(&storage)) T(value);
is_set = true;
}
maybe(const maybe& other)
: is_set(false)
{
if (other.is_set) {
new (reinterpret_cast<T*>(&storage)) T(*other.get());
is_set = true;
}
}
maybe(maybe&& other)
: is_set(false)
{
if (other.is_set) {
new (reinterpret_cast<T*>(&storage)) T(std::move(*other.get()));
is_set = true;
other.reset();
}
}
~maybe()
{
reset();
}
void reset()
{
if (is_set) {
is_set = false;
reinterpret_cast<T*>(&storage)->~T();
}
}
T* get() {
return is_set ? reinterpret_cast<T*>(&storage) : 0;
}
const T* get() const {
return is_set ? reinterpret_cast<const T*>(&storage) : 0;
}
void set(T value) {
if (is_set) {
*reinterpret_cast<T*>(&storage) = std::move(value);
} else {
new (reinterpret_cast<T*>(&storage)) T(std::move(value));
is_set = true;
}
}
T& operator*() { return *get(); }
const T& operator*() const { return *get(); }
T* operator->() { return get(); }
const T* operator->() const { return get(); }
maybe& operator=(const T& other) {
set(other);
}
maybe& operator=(const maybe& other) {
if (const T* pother = other.get()) {
set(*pother);
} else {
reset();
}
return *this;
}
// boolean-like operators
operator T*() { return get(); }
operator const T*() const { return get(); }
private:
};
}}
#endif //CPPLINQ_UTIL_HPP