sled/3party/rxcpp/rx-scheduler.hpp

962 lines
28 KiB
C++
Raw Normal View History

2024-03-14 20:50:17 +08:00
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#pragma once
#if !defined(RXCPP_RX_SCHEDULER_HPP)
#define RXCPP_RX_SCHEDULER_HPP
#include "rx-includes.hpp"
namespace rxcpp {
namespace schedulers {
class worker_interface;
class scheduler_interface;
namespace detail {
class action_type;
typedef std::shared_ptr<action_type> action_ptr;
typedef std::shared_ptr<worker_interface> worker_interface_ptr;
typedef std::shared_ptr<const worker_interface> const_worker_interface_ptr;
typedef std::weak_ptr<worker_interface> worker_interface_weak_ptr;
typedef std::weak_ptr<const worker_interface> const_worker_interface_weak_ptr;
typedef std::shared_ptr<scheduler_interface> scheduler_interface_ptr;
typedef std::shared_ptr<const scheduler_interface> const_scheduler_interface_ptr;
inline action_ptr shared_empty() {
static action_ptr shared_empty = std::make_shared<detail::action_type>();
return shared_empty;
}
}
// It is essential to keep virtual function calls out of an inner loop.
// To make tail-recursion work efficiently the recursion objects create
// a space on the stack inside the virtual function call in the actor that
// allows the callback and the scheduler to share stack space that records
// the request and the allowance without any virtual calls in the loop.
/// recursed is set on a schedulable by the action to allow the called
/// function to request to be rescheduled.
class recursed
{
bool& isrequested;
recursed operator=(const recursed&);
public:
explicit recursed(bool& r)
: isrequested(r)
{
}
/// request to be rescheduled
inline void operator()() const {
isrequested = true;
}
};
/// recurse is passed to the action by the scheduler.
/// the action uses recurse to coordinate the scheduler and the function.
class recurse
{
std::atomic<bool>& isallowed;
mutable bool isrequested;
recursed requestor;
recurse operator=(const recurse&);
public:
explicit recurse(std::atomic<bool>& a)
: isallowed(a)
, isrequested(true)
, requestor(isrequested)
{
}
/// does the scheduler allow tail-recursion now?
inline bool is_allowed() const {
return isallowed;
}
/// did the function request to be recursed?
inline bool is_requested() const {
return isrequested;
}
/// reset the function request. call before each call to the function.
inline void reset() const {
isrequested = false;
}
/// get the recursed to set into the schedulable for the function to use to request recursion
inline const recursed& get_recursed() const {
return requestor;
}
};
/// recursion is used by the scheduler to signal to each action whether tail recursion is allowed.
class recursion
{
mutable std::atomic<bool> isallowed;
recurse recursor;
recursion operator=(const recursion&);
public:
recursion()
: isallowed(true)
, recursor(isallowed)
{
}
explicit recursion(bool b)
: isallowed(b)
, recursor(isallowed)
{
}
/// set whether tail-recursion is allowed
inline void reset(bool b = true) const {
isallowed = b;
}
/// get the recurse to pass into each action being called
inline const recurse& get_recurse() const {
return recursor;
}
};
struct action_base
{
typedef tag_action action_tag;
};
class schedulable;
/// action provides type-forgetting for a potentially recursive set of calls to a function that takes a schedulable
class action : public action_base
{
typedef action this_type;
detail::action_ptr inner;
public:
action()
{
}
explicit action(detail::action_ptr i)
: inner(std::move(i))
{
}
/// return the empty action
inline static action empty() {
return action(detail::shared_empty());
}
/// call the function
inline void operator()(const schedulable& s, const recurse& r) const;
};
struct scheduler_base
{
typedef std::chrono::steady_clock clock_type;
typedef tag_scheduler scheduler_tag;
};
struct worker_base : public subscription_base
{
typedef tag_worker worker_tag;
};
class worker_interface
: public std::enable_shared_from_this<worker_interface>
{
typedef worker_interface this_type;
public:
typedef scheduler_base::clock_type clock_type;
virtual ~worker_interface() {}
virtual clock_type::time_point now() const = 0;
virtual void schedule(const schedulable& scbl) const = 0;
virtual void schedule(clock_type::time_point when, const schedulable& scbl) const = 0;
};
namespace detail {
template<class F>
struct is_action_function
{
struct not_void {};
template<class CF>
static auto check(int) -> decltype((*(CF*)nullptr)(*(schedulable*)nullptr));
template<class CF>
static not_void check(...);
static const bool value = std::is_same<decltype(check<rxu::decay_t<F>>(0)), void>::value;
};
}
class weak_worker;
/// a worker ensures that all scheduled actions on the same instance are executed in-order with no overlap
/// a worker ensures that all scheduled actions are unsubscribed when it is unsubscribed
/// some inner implementations will impose additional constraints on the execution of items.
class worker : public worker_base
{
typedef worker this_type;
detail::worker_interface_ptr inner;
composite_subscription lifetime;
friend bool operator==(const worker&, const worker&);
friend class weak_worker;
public:
typedef scheduler_base::clock_type clock_type;
typedef composite_subscription::weak_subscription weak_subscription;
worker()
{
}
worker(composite_subscription cs, detail::const_worker_interface_ptr i)
: inner(std::const_pointer_cast<worker_interface>(i))
, lifetime(std::move(cs))
{
}
worker(composite_subscription cs, worker o)
: inner(o.inner)
, lifetime(std::move(cs))
{
}
inline const composite_subscription& get_subscription() const {
return lifetime;
}
inline composite_subscription& get_subscription() {
return lifetime;
}
// composite_subscription
//
inline bool is_subscribed() const {
return lifetime.is_subscribed();
}
inline weak_subscription add(subscription s) const {
return lifetime.add(std::move(s));
}
inline void remove(weak_subscription w) const {
return lifetime.remove(std::move(w));
}
inline void clear() const {
return lifetime.clear();
}
inline void unsubscribe() const {
return lifetime.unsubscribe();
}
// worker_interface
//
/// return the current time for this worker
inline clock_type::time_point now() const {
return inner->now();
}
/// insert the supplied schedulable to be run as soon as possible
inline void schedule(const schedulable& scbl) const {
// force rebinding scbl to this worker
schedule_rebind(scbl);
}
/// insert the supplied schedulable to be run at the time specified
inline void schedule(clock_type::time_point when, const schedulable& scbl) const {
// force rebinding scbl to this worker
schedule_rebind(when, scbl);
}
// helpers
//
/// insert the supplied schedulable to be run at now() + the delay specified
inline void schedule(clock_type::duration when, const schedulable& scbl) const {
// force rebinding scbl to this worker
schedule_rebind(now() + when, scbl);
}
/// insert the supplied schedulable to be run at the initial time specified and then again at initial + (N * period)
/// this will continue until the worker or schedulable is unsubscribed.
inline void schedule_periodically(clock_type::time_point initial, clock_type::duration period, const schedulable& scbl) const {
// force rebinding scbl to this worker
schedule_periodically_rebind(initial, period, scbl);
}
/// insert the supplied schedulable to be run at now() + the initial delay specified and then again at now() + initial + (N * period)
/// this will continue until the worker or schedulable is unsubscribed.
inline void schedule_periodically(clock_type::duration initial, clock_type::duration period, const schedulable& scbl) const {
// force rebinding scbl to this worker
schedule_periodically_rebind(now() + initial, period, scbl);
}
/// use the supplied arguments to make a schedulable and then insert it to be run
template<class Arg0, class... ArgN>
auto schedule(Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type;
template<class... ArgN>
/// use the supplied arguments to make a schedulable and then insert it to be run
void schedule_rebind(const schedulable& scbl, ArgN&&... an) const;
/// use the supplied arguments to make a schedulable and then insert it to be run
template<class Arg0, class... ArgN>
auto schedule(clock_type::time_point when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type;
/// use the supplied arguments to make a schedulable and then insert it to be run
template<class... ArgN>
void schedule_rebind(clock_type::time_point when, const schedulable& scbl, ArgN&&... an) const;
/// use the supplied arguments to make a schedulable and then insert it to be run
template<class Arg0, class... ArgN>
auto schedule_periodically(clock_type::time_point initial, clock_type::duration period, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type;
/// use the supplied arguments to make a schedulable and then insert it to be run
template<class... ArgN>
void schedule_periodically_rebind(clock_type::time_point initial, clock_type::duration period, const schedulable& scbl, ArgN&&... an) const;
};
inline bool operator==(const worker& lhs, const worker& rhs) {
return lhs.inner == rhs.inner && lhs.lifetime == rhs.lifetime;
}
inline bool operator!=(const worker& lhs, const worker& rhs) {
return !(lhs == rhs);
}
class weak_worker
{
detail::worker_interface_weak_ptr inner;
composite_subscription lifetime;
public:
weak_worker()
{
}
explicit weak_worker(worker& owner)
: inner(owner.inner)
, lifetime(owner.lifetime)
{
}
worker lock() const {
return worker(lifetime, inner.lock());
}
};
class scheduler_interface
: public std::enable_shared_from_this<scheduler_interface>
{
typedef scheduler_interface this_type;
public:
typedef scheduler_base::clock_type clock_type;
virtual ~scheduler_interface() {}
virtual clock_type::time_point now() const = 0;
virtual worker create_worker(composite_subscription cs) const = 0;
};
struct schedulable_base :
// public subscription_base, <- already in worker base
public worker_base,
public action_base
{
typedef tag_schedulable schedulable_tag;
};
/*!
\brief allows functions to be called at specified times and possibly in other contexts.
\ingroup group-core
*/
class scheduler : public scheduler_base
{
typedef scheduler this_type;
detail::scheduler_interface_ptr inner;
friend bool operator==(const scheduler&, const scheduler&);
public:
typedef scheduler_base::clock_type clock_type;
scheduler()
{
}
explicit scheduler(detail::scheduler_interface_ptr i)
: inner(std::move(i))
{
}
explicit scheduler(detail::const_scheduler_interface_ptr i)
: inner(std::const_pointer_cast<scheduler_interface>(i))
{
}
/// return the current time for this scheduler
inline clock_type::time_point now() const {
return inner->now();
}
/// create a worker with a lifetime.
/// when the worker is unsubscribed all scheduled items will be unsubscribed.
/// items scheduled to a worker will be run one at a time.
/// scheduling order is preserved: when more than one item is scheduled for
/// time T then at time T they will be run in the order that they were scheduled.
inline worker create_worker(composite_subscription cs = composite_subscription()) const {
return inner->create_worker(cs);
}
};
template<class Scheduler, class... ArgN>
inline scheduler make_scheduler(ArgN&&... an) {
return scheduler(std::static_pointer_cast<scheduler_interface>(std::make_shared<Scheduler>(std::forward<ArgN>(an)...)));
}
inline scheduler make_scheduler(std::shared_ptr<scheduler_interface> si) {
return scheduler(si);
}
class schedulable : public schedulable_base
{
typedef schedulable this_type;
composite_subscription lifetime;
weak_worker controller;
action activity;
bool scoped;
composite_subscription::weak_subscription action_scope;
struct detacher
{
~detacher()
{
if (that) {
that->unsubscribe();
}
}
detacher(const this_type* that)
: that(that)
{
}
const this_type* that;
};
class recursed_scope_type
{
mutable const recursed* requestor;
class exit_recursed_scope_type
{
const recursed_scope_type* that;
public:
~exit_recursed_scope_type()
{
if (that != nullptr) {
that->requestor = nullptr;
}
}
exit_recursed_scope_type(const recursed_scope_type* that)
: that(that)
{
}
exit_recursed_scope_type(exit_recursed_scope_type && other) RXCPP_NOEXCEPT
: that(other.that)
{
other.that = nullptr;
}
};
public:
recursed_scope_type()
: requestor(nullptr)
{
}
recursed_scope_type(const recursed_scope_type&)
: requestor(nullptr)
{
// does not aquire recursion scope
}
recursed_scope_type& operator=(const recursed_scope_type& )
{
// no change in recursion scope
return *this;
}
exit_recursed_scope_type reset(const recurse& r) const {
requestor = std::addressof(r.get_recursed());
return exit_recursed_scope_type(this);
}
bool is_recursed() const {
return !!requestor;
}
void operator()() const {
(*requestor)();
}
};
recursed_scope_type recursed_scope;
public:
typedef composite_subscription::weak_subscription weak_subscription;
typedef scheduler_base::clock_type clock_type;
~schedulable()
{
if (scoped) {
controller.lock().remove(action_scope);
}
}
schedulable()
: scoped(false)
{
}
/// action and worker share lifetime
schedulable(worker q, action a)
: lifetime(q.get_subscription())
, controller(q)
, activity(std::move(a))
, scoped(false)
{
}
/// action and worker have independent lifetimes
schedulable(composite_subscription cs, worker q, action a)
: lifetime(std::move(cs))
, controller(q)
, activity(std::move(a))
, scoped(true)
, action_scope(controller.lock().add(lifetime))
{
}
/// inherit lifetimes
schedulable(schedulable scbl, worker q, action a)
: lifetime(scbl.get_subscription())
, controller(q)
, activity(std::move(a))
, scoped(scbl.scoped)
, action_scope(scbl.scoped ? controller.lock().add(lifetime) : weak_subscription())
{
}
inline const composite_subscription& get_subscription() const {
return lifetime;
}
inline composite_subscription& get_subscription() {
return lifetime;
}
inline const worker get_worker() const {
return controller.lock();
}
inline worker get_worker() {
return controller.lock();
}
inline const action& get_action() const {
return activity;
}
inline action& get_action() {
return activity;
}
inline static schedulable empty(worker sc) {
return schedulable(composite_subscription::empty(), sc, action::empty());
}
inline auto set_recursed(const recurse& r) const
-> decltype(recursed_scope.reset(r)) {
return recursed_scope.reset(r);
}
// recursed
//
bool is_recursed() const {
return recursed_scope.is_recursed();
}
/// requests tail-recursion of the same action
/// this will exit the process if called when
/// is_recursed() is false.
/// Note: to improve perf it is not required
/// to call is_recursed() before calling this
/// operator. Context is sufficient. The schedulable
/// passed to the action by the scheduler will return
/// true from is_recursed()
inline void operator()() const {
recursed_scope();
}
// composite_subscription
//
inline bool is_subscribed() const {
return lifetime.is_subscribed();
}
inline weak_subscription add(subscription s) const {
return lifetime.add(std::move(s));
}
template<class F>
auto add(F f) const
-> typename std::enable_if<rxcpp::detail::is_unsubscribe_function<F>::value, weak_subscription>::type {
return lifetime.add(make_subscription(std::move(f)));
}
inline void remove(weak_subscription w) const {
return lifetime.remove(std::move(w));
}
inline void clear() const {
return lifetime.clear();
}
inline void unsubscribe() const {
return lifetime.unsubscribe();
}
// scheduler
//
inline clock_type::time_point now() const {
return controller.lock().now();
}
/// put this on the queue of the stored scheduler to run asap
inline void schedule() const {
if (is_subscribed()) {
get_worker().schedule(*this);
}
}
/// put this on the queue of the stored scheduler to run at the specified time
inline void schedule(clock_type::time_point when) const {
if (is_subscribed()) {
get_worker().schedule(when, *this);
}
}
/// put this on the queue of the stored scheduler to run after a delay from now
inline void schedule(clock_type::duration when) const {
if (is_subscribed()) {
get_worker().schedule(when, *this);
}
}
// action
//
/// invokes the action
inline void operator()(const recurse& r) const {
if (!is_subscribed()) {
return;
}
detacher protect(this);
activity(*this, r);
protect.that = nullptr;
}
};
struct current_thread;
namespace detail {
class action_type
: public std::enable_shared_from_this<action_type>
{
typedef action_type this_type;
public:
typedef std::function<void(const schedulable&, const recurse&)> function_type;
private:
function_type f;
public:
action_type()
{
}
action_type(function_type f)
: f(std::move(f))
{
}
inline void operator()(const schedulable& s, const recurse& r) {
if (!f) {
std::terminate();
}
f(s, r);
}
};
class action_tailrecurser
: public std::enable_shared_from_this<action_type>
{
typedef action_type this_type;
public:
typedef std::function<void(const schedulable&)> function_type;
private:
function_type f;
public:
action_tailrecurser()
{
}
action_tailrecurser(function_type f)
: f(std::move(f))
{
}
inline void operator()(const schedulable& s, const recurse& r) {
if (!f) {
std::terminate();
}
trace_activity().action_enter(s);
auto scope = s.set_recursed(r);
while (s.is_subscribed()) {
r.reset();
f(s);
if (!r.is_allowed() || !r.is_requested()) {
if (r.is_requested()) {
s.schedule();
}
break;
}
trace_activity().action_recurse(s);
}
trace_activity().action_return(s);
}
};
}
inline void action::operator()(const schedulable& s, const recurse& r) const {
(*inner)(s, r);
}
inline action make_action_empty() {
return action::empty();
}
template<class F>
inline action make_action(F&& f) {
static_assert(detail::is_action_function<F>::value, "action function must be void(schedulable)");
auto fn = std::forward<F>(f);
return action(std::make_shared<detail::action_type>(detail::action_tailrecurser(fn)));
}
// copy
inline auto make_schedulable(
const schedulable& scbl)
-> schedulable {
return schedulable(scbl);
}
// move
inline auto make_schedulable(
schedulable&& scbl)
-> schedulable {
return schedulable(std::move(scbl));
}
inline schedulable make_schedulable(worker sc, action a) {
return schedulable(sc, a);
}
inline schedulable make_schedulable(worker sc, composite_subscription cs, action a) {
return schedulable(cs, sc, a);
}
template<class F>
auto make_schedulable(worker sc, F&& f)
-> typename std::enable_if<detail::is_action_function<F>::value, schedulable>::type {
return schedulable(sc, make_action(std::forward<F>(f)));
}
template<class F>
auto make_schedulable(worker sc, composite_subscription cs, F&& f)
-> typename std::enable_if<detail::is_action_function<F>::value, schedulable>::type {
return schedulable(cs, sc, make_action(std::forward<F>(f)));
}
template<class F>
auto make_schedulable(schedulable scbl, composite_subscription cs, F&& f)
-> typename std::enable_if<detail::is_action_function<F>::value, schedulable>::type {
return schedulable(cs, scbl.get_worker(), make_action(std::forward<F>(f)));
}
template<class F>
auto make_schedulable(schedulable scbl, worker sc, F&& f)
-> typename std::enable_if<detail::is_action_function<F>::value, schedulable>::type {
return schedulable(scbl, sc, make_action(std::forward<F>(f)));
}
template<class F>
auto make_schedulable(schedulable scbl, F&& f)
-> typename std::enable_if<detail::is_action_function<F>::value, schedulable>::type {
return schedulable(scbl, scbl.get_worker(), make_action(std::forward<F>(f)));
}
inline auto make_schedulable(schedulable scbl, composite_subscription cs)
-> schedulable {
return schedulable(cs, scbl.get_worker(), scbl.get_action());
}
inline auto make_schedulable(schedulable scbl, worker sc, composite_subscription cs)
-> schedulable {
return schedulable(cs, sc, scbl.get_action());
}
inline auto make_schedulable(schedulable scbl, worker sc)
-> schedulable {
return schedulable(scbl, sc, scbl.get_action());
}
template<class Arg0, class... ArgN>
auto worker::schedule(Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
auto scbl = make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...);
trace_activity().schedule_enter(*inner.get(), scbl);
inner->schedule(std::move(scbl));
trace_activity().schedule_return(*inner.get());
}
template<class... ArgN>
void worker::schedule_rebind(const schedulable& scbl, ArgN&&... an) const {
auto rescbl = make_schedulable(scbl, *this, std::forward<ArgN>(an)...);
trace_activity().schedule_enter(*inner.get(), rescbl);
inner->schedule(std::move(rescbl));
trace_activity().schedule_return(*inner.get());
}
template<class Arg0, class... ArgN>
auto worker::schedule(clock_type::time_point when, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
auto scbl = make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...);
trace_activity().schedule_when_enter(*inner.get(), when, scbl);
inner->schedule(when, std::move(scbl));
trace_activity().schedule_when_return(*inner.get());
}
template<class... ArgN>
void worker::schedule_rebind(clock_type::time_point when, const schedulable& scbl, ArgN&&... an) const {
auto rescbl = make_schedulable(scbl, *this, std::forward<ArgN>(an)...);
trace_activity().schedule_when_enter(*inner.get(), when, rescbl);
inner->schedule(when, std::move(rescbl));
trace_activity().schedule_when_return(*inner.get());
}
template<class Arg0, class... ArgN>
auto worker::schedule_periodically(clock_type::time_point initial, clock_type::duration period, Arg0&& a0, ArgN&&... an) const
-> typename std::enable_if<
(detail::is_action_function<Arg0>::value ||
is_subscription<Arg0>::value) &&
!is_schedulable<Arg0>::value>::type {
schedule_periodically_rebind(initial, period, make_schedulable(*this, std::forward<Arg0>(a0), std::forward<ArgN>(an)...));
}
template<class... ArgN>
void worker::schedule_periodically_rebind(clock_type::time_point initial, clock_type::duration period, const schedulable& scbl, ArgN&&... an) const {
auto keepAlive = *this;
auto target = std::make_shared<clock_type::time_point>(initial);
auto activity = make_schedulable(scbl, keepAlive, std::forward<ArgN>(an)...);
auto periodic = make_schedulable(
activity,
[keepAlive, target, period, activity](schedulable self) {
// any recursion requests will be pushed to the scheduler queue
recursion r(false);
// call action
activity(r.get_recurse());
// schedule next occurance (if the action took longer than 'period' target will be in the past)
*target += period;
self.schedule(*target);
});
trace_activity().schedule_when_enter(*inner.get(), *target, periodic);
inner->schedule(*target, periodic);
trace_activity().schedule_when_return(*inner.get());
}
namespace detail {
template<class TimePoint>
struct time_schedulable
{
typedef TimePoint time_point_type;
time_schedulable(TimePoint when, schedulable a)
: when(when)
, what(std::move(a))
{
}
TimePoint when;
schedulable what;
};
// Sorts time_schedulable items in priority order sorted
// on value of time_schedulable.when. Items with equal
// values for when are sorted in fifo order.
template<class TimePoint>
class schedulable_queue {
public:
typedef time_schedulable<TimePoint> item_type;
typedef std::pair<item_type, int64_t> elem_type;
typedef std::vector<elem_type> container_type;
typedef const item_type& const_reference;
private:
struct compare_elem
{
bool operator()(const elem_type& lhs, const elem_type& rhs) const {
if (lhs.first.when == rhs.first.when) {
return lhs.second > rhs.second;
}
else {
return lhs.first.when > rhs.first.when;
}
}
};
typedef std::priority_queue<
elem_type,
container_type,
compare_elem
> queue_type;
queue_type q;
int64_t ordinal;
public:
schedulable_queue()
: ordinal(0)
{
}
const_reference top() const {
return q.top().first;
}
void pop() {
q.pop();
}
bool empty() const {
return q.empty();
}
void push(const item_type& value) {
q.push(elem_type(value, ordinal++));
}
void push(item_type&& value) {
q.push(elem_type(std::move(value), ordinal++));
}
};
}
}
namespace rxsc=schedulers;
}
#include "schedulers/rx-currentthread.hpp"
#include "schedulers/rx-runloop.hpp"
#include "schedulers/rx-newthread.hpp"
#include "schedulers/rx-eventloop.hpp"
#include "schedulers/rx-immediate.hpp"
#include "schedulers/rx-virtualtime.hpp"
#include "schedulers/rx-sameworker.hpp"
#endif