mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-21 02:12:31 +00:00
289 lines
10 KiB
Plaintext
289 lines
10 KiB
Plaintext
#include "set-rows.cuh"
|
|
#include "cpy-utils.cuh"
|
|
|
|
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
|
|
|
|
template<typename src_t, typename dst_t>
|
|
__device__ void set_rows_1(const src_t * src_f, dst_t * dst_f) {
|
|
GGML_UNUSED(src_f);
|
|
GGML_UNUSED(dst_f);
|
|
}
|
|
|
|
template<>
|
|
__device__ __forceinline__ void set_rows_1<float, half>(const float * src_f, half * dst_h) {
|
|
convert_f32_f16(src_f, dst_h);
|
|
}
|
|
|
|
template<>
|
|
__device__ __forceinline__ void set_rows_1<float, nv_bfloat16>(const float * src_f, nv_bfloat16 * dst_b) {
|
|
convert_f32_bf16(src_f, dst_b);
|
|
}
|
|
|
|
template<>
|
|
__device__ __forceinline__ void set_rows_1<float, float>(const float * src_f, float * dst_f) {
|
|
convert_f32_f32(src_f, dst_f);
|
|
}
|
|
|
|
// Generic quantized set_rows kernel template
|
|
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
|
static __global__ void k_set_rows_quant(
|
|
const float * __restrict__ src0, const int64_t * __restrict__ src1, block_type * __restrict__ dst,
|
|
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
|
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
|
const int64_t s01, const int64_t s02, const int64_t s03,
|
|
const int64_t s10, const int64_t s11, const int64_t s12,
|
|
const int64_t s1, const int64_t s2, const int64_t s3) {
|
|
|
|
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
|
const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk;
|
|
|
|
if (i >= ne_total) {
|
|
return;
|
|
}
|
|
|
|
const int64_t i_base = i * qk;
|
|
const int64_t i03 = i_base / (ne00 * ne01 * ne02);
|
|
const int64_t i02 = (i_base - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
|
|
const int64_t i01 = (i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
|
|
const int64_t i00 = i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
|
|
|
|
const int64_t i12 = i03 % ne12;
|
|
const int64_t i11 = i02 % ne11;
|
|
const int64_t i10 = i01;
|
|
|
|
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
|
|
|
|
const float * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
|
|
block_type * dst_row_ptr = dst + (dst_row*s1 + i02*s2 + i03*s3) / sizeof(block_type);
|
|
|
|
const float * src_block = src0_row + i00;
|
|
block_type * dst_block = dst_row_ptr + i00 / qk;
|
|
|
|
quantize_func(src_block, dst_block);
|
|
}
|
|
|
|
// Template dispatch function for quantized set_rows
|
|
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
|
static void set_rows_cuda_quant(
|
|
const float * src0_d, const int64_t * src1_d, block_type * dst_d,
|
|
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
|
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
|
const size_t nb01, const size_t nb02, const size_t nb03,
|
|
const size_t nb10, const size_t nb11, const size_t nb12,
|
|
const size_t nb1, const size_t nb2, const size_t nb3,
|
|
cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ne00 % qk == 0);
|
|
const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk;
|
|
const int num_blocks = (ne_total + CUDA_SET_ROWS_BLOCK_SIZE - 1) / CUDA_SET_ROWS_BLOCK_SIZE;
|
|
const dim3 block_size(CUDA_SET_ROWS_BLOCK_SIZE);
|
|
const dim3 grid_size(num_blocks);
|
|
|
|
const int64_t s01 = nb01/sizeof(float);
|
|
const int64_t s02 = nb02/sizeof(float);
|
|
const int64_t s03 = nb03/sizeof(float);
|
|
const int64_t s10 = nb10/sizeof(int64_t);
|
|
const int64_t s11 = nb11/sizeof(int64_t);
|
|
const int64_t s12 = nb12/sizeof(int64_t);
|
|
const int64_t s1 = nb1;
|
|
const int64_t s2 = nb2;
|
|
const int64_t s3 = nb3;
|
|
|
|
if (ne_total > 0) {
|
|
k_set_rows_quant<block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
|
src0_d, src1_d, dst_d,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
s01, s02, s03,
|
|
s10, s11, s12,
|
|
s1, s2, s3);
|
|
}
|
|
}
|
|
|
|
template<typename src_t, typename dst_t>
|
|
static __global__ void k_set_rows(
|
|
const src_t * __restrict__ src0, const int64_t * __restrict__ src1, dst_t * __restrict__ dst,
|
|
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
|
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
|
const int64_t s01, const int64_t s02, const int64_t s03,
|
|
const int64_t s10, const int64_t s11, const int64_t s12,
|
|
const int64_t s1, const int64_t s2, const int64_t s3) {
|
|
|
|
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
|
const int64_t ne_total = ne00 * ne01 * ne02 * ne03;
|
|
|
|
if (i >= ne_total) {
|
|
return;
|
|
}
|
|
|
|
const int64_t i03 = i / (ne00 * ne01 * ne02);
|
|
const int64_t i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
|
|
const int64_t i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
|
|
const int64_t i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
|
|
|
|
const int64_t i12 = i03 % ne12;
|
|
const int64_t i11 = i02 % ne11;
|
|
const int64_t i10 = i01;
|
|
|
|
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
|
|
|
|
const src_t * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
|
|
dst_t * dst_row_ptr = dst + dst_row*s1 + i02*s2 + i03*s3;
|
|
|
|
const src_t* src_elem = src0_row + i00;
|
|
dst_t* dst_elem = dst_row_ptr + i00;
|
|
set_rows_1(src_elem, dst_elem);
|
|
|
|
GGML_UNUSED(ne10);
|
|
GGML_UNUSED(ne13);
|
|
}
|
|
|
|
template<typename src_t, typename dst_t>
|
|
static void set_rows_cuda(
|
|
const src_t * src0_d, const int64_t * src1_d, dst_t * dst_d,
|
|
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
|
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
|
const size_t nb01, const size_t nb02, const size_t nb03,
|
|
const size_t nb10, const size_t nb11, const size_t nb12,
|
|
const size_t nb1, const size_t nb2, const size_t nb3,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne_total = ne00 * ne01 * ne02 * ne03;
|
|
const int num_blocks = (ne_total + CUDA_SET_ROWS_BLOCK_SIZE - 1) / CUDA_SET_ROWS_BLOCK_SIZE;
|
|
const dim3 block_size(CUDA_SET_ROWS_BLOCK_SIZE);
|
|
const dim3 grid_size(num_blocks);
|
|
|
|
|
|
const int64_t s01 = nb01/sizeof(src_t);
|
|
const int64_t s02 = nb02/sizeof(src_t);
|
|
const int64_t s03 = nb03/sizeof(src_t);
|
|
const int64_t s10 = nb10/sizeof(int64_t);
|
|
const int64_t s11 = nb11/sizeof(int64_t);
|
|
const int64_t s12 = nb12/sizeof(int64_t);
|
|
const int64_t s1 = nb1/sizeof(dst_t);
|
|
const int64_t s2 = nb2/sizeof(dst_t);
|
|
const int64_t s3 = nb3/sizeof(dst_t);
|
|
|
|
if (ne_total > 0) {
|
|
k_set_rows<<<grid_size, block_size, 0, stream>>>(
|
|
src0_d, src1_d, dst_d,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
s01, s02, s03,
|
|
s10, s11, s12,
|
|
s1, s2, s3);
|
|
}
|
|
}
|
|
|
|
|
|
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I64);
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const float * src0_d = (const float *)src0->data;
|
|
const int64_t * src1_d = (const int64_t *)src1->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
set_rows_cuda(
|
|
src0_d, src1_d, (float*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
set_rows_cuda(
|
|
src0_d, src1_d, (half*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_BF16) {
|
|
set_rows_cuda(
|
|
src0_d, src1_d, (nv_bfloat16*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_Q4_0) {
|
|
set_rows_cuda_quant<block_q4_0, QK4_0, quantize_f32_q4_0_block>(
|
|
src0_d, src1_d, (block_q4_0*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_Q4_1) {
|
|
set_rows_cuda_quant<block_q4_1, QK4_1, quantize_f32_q4_1_block>(
|
|
src0_d, src1_d, (block_q4_1*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_Q5_0) {
|
|
set_rows_cuda_quant<block_q5_0, QK5_0, quantize_f32_q5_0_block>(
|
|
src0_d, src1_d, (block_q5_0*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_Q5_1) {
|
|
set_rows_cuda_quant<block_q5_1, QK5_1, quantize_f32_q5_1_block>(
|
|
src0_d, src1_d, (block_q5_1*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_Q8_0) {
|
|
set_rows_cuda_quant<block_q8_0, QK8_0, quantize_f32_q8_0_block>(
|
|
src0_d, src1_d, (block_q8_0*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else if (dst->type == GGML_TYPE_IQ4_NL) {
|
|
set_rows_cuda_quant<block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
|
|
src0_d, src1_d, (block_iq4_nl*)dst->data,
|
|
ne00, ne01, ne02, ne03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb01, nb02, nb03,
|
|
nb10, nb11, nb12,
|
|
nb1, nb2, nb3,
|
|
stream
|
|
);
|
|
} else {
|
|
GGML_ABORT("unsupported type %s", ggml_type_name(dst->type));
|
|
}
|
|
}
|