mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-07 09:22:39 -04:00
This should help support architectures like Falcon H1 where there is overlap between layers that need attention and recurrent caches. https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922 Branch: HybridRecurrentCache Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
253 lines
9.1 KiB
C++
253 lines
9.1 KiB
C++
#include "llama-kv-cache-hybrid-recurrent.h"
|
|
|
|
#include "llama-impl.h"
|
|
#include "llama-model.h"
|
|
#include "llama-context.h"
|
|
|
|
//
|
|
// llama_kv_cache_hybrid_recurrent
|
|
//
|
|
|
|
llama_kv_cache_hybrid_recurrent::llama_kv_cache_hybrid_recurrent(
|
|
const llama_model & model,
|
|
/* attn */
|
|
ggml_type attn_type_k,
|
|
ggml_type attn_type_v,
|
|
bool attn_v_trans,
|
|
uint32_t attn_kv_size,
|
|
uint32_t attn_n_pad,
|
|
uint32_t attn_n_swa,
|
|
llama_swa_type attn_swa_type,
|
|
/* recurrent */
|
|
ggml_type recurrent_type_k,
|
|
ggml_type recurrent_type_v,
|
|
uint32_t recurrent_kv_size,
|
|
/* common */
|
|
uint32_t n_seq_max,
|
|
bool offload,
|
|
/* layer filters */
|
|
layer_filter_cb && attn_filter,
|
|
layer_filter_cb && recurrent_filter) :
|
|
hparams(model.hparams),
|
|
kv_attn(new llama_kv_cache_unified(
|
|
model,
|
|
attn_filter == nullptr ?
|
|
[&](int32_t il) { return !model.hparams.recurrent_layer(il); }
|
|
: attn_filter,
|
|
attn_type_k,
|
|
attn_type_v,
|
|
attn_v_trans,
|
|
offload,
|
|
attn_kv_size,
|
|
n_seq_max,
|
|
attn_n_pad,
|
|
attn_n_swa,
|
|
attn_swa_type
|
|
)),
|
|
kv_recurrent(new llama_kv_cache_recurrent(
|
|
model,
|
|
recurrent_filter == nullptr ?
|
|
[&](int32_t il) { return model.hparams.recurrent_layer(il); }
|
|
: recurrent_filter,
|
|
recurrent_type_k,
|
|
recurrent_type_v,
|
|
offload,
|
|
recurrent_kv_size,
|
|
n_seq_max
|
|
)) {}
|
|
|
|
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
|
|
|
|
// since this includes a recurrent cache, we cannot use split_simple
|
|
auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all);
|
|
|
|
// follow the recurrent pattern for creating the ubatch splits
|
|
std::vector<llama_ubatch> ubatches;
|
|
while (sbatch.n_tokens > 0) {
|
|
llama_ubatch ubatch;
|
|
|
|
if (embd_pooled) {
|
|
// Pooled embeddings cannot be split across ubatches (yet)
|
|
ubatch = sbatch.split_seq(n_ubatch);
|
|
} else {
|
|
ubatch = sbatch.split_equal(n_ubatch);
|
|
}
|
|
|
|
ubatches.push_back(ubatch);
|
|
}
|
|
|
|
// prepare the recurrent batches first
|
|
if (!kv_recurrent->prepare(ubatches)) {
|
|
// TODO: will the recurrent cache be in an undefined state at this point?
|
|
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
|
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
// prepare the attention cache
|
|
auto heads_attn = kv_attn->prepare(ubatches);
|
|
if (heads_attn.empty()) {
|
|
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
|
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
|
|
this, std::move(sbatch), std::move(heads_attn), std::move(ubatches));
|
|
}
|
|
|
|
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_full() {
|
|
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(this);
|
|
}
|
|
|
|
llama_memory_state_ptr llama_kv_cache_hybrid_recurrent::init_update(llama_context * lctx, bool optimize) {
|
|
return std::make_unique<llama_kv_cache_hybrid_recurrent_state>(
|
|
this,
|
|
static_cast<llama_kv_cache_unified_state *>( kv_attn ->init_update(lctx, optimize).release()),
|
|
static_cast<llama_kv_cache_recurrent_state *>(kv_recurrent->init_update(lctx, optimize).release()));
|
|
}
|
|
|
|
bool llama_kv_cache_hybrid_recurrent::get_can_shift() const {
|
|
// Shifting is trivially supported for recurrent
|
|
return kv_attn->get_can_shift();
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::clear(bool data) {
|
|
kv_attn ->clear(data);
|
|
kv_recurrent->clear(data);
|
|
}
|
|
|
|
bool llama_kv_cache_hybrid_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
// Try removing from the recurrent cache first since it may fail. If it does
|
|
// fail, the cache will not have been mutated.
|
|
if (!kv_recurrent->seq_rm(seq_id, p0, p1)) {
|
|
return false;
|
|
}
|
|
return kv_attn->seq_rm(seq_id, p0, p1);
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
kv_attn ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
kv_recurrent->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::seq_keep(llama_seq_id seq_id) {
|
|
kv_attn ->seq_keep(seq_id);
|
|
kv_recurrent->seq_keep(seq_id);
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
kv_attn->seq_add(seq_id, p0, p1, shift);
|
|
kv_recurrent->seq_add(seq_id, p0, p1, shift);
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
kv_attn ->seq_div(seq_id, p0, p1, d);
|
|
kv_recurrent->seq_div(seq_id, p0, p1, d);
|
|
}
|
|
|
|
llama_pos llama_kv_cache_hybrid_recurrent::seq_pos_min(llama_seq_id seq_id) const {
|
|
// the min of the total cache is the max of the two caches' min values
|
|
return std::max(kv_attn->seq_pos_min(seq_id), kv_recurrent->seq_pos_min(seq_id));
|
|
}
|
|
|
|
llama_pos llama_kv_cache_hybrid_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
|
// the max of the total cache is the min of the two caches' max values
|
|
return std::min(kv_attn->seq_pos_max(seq_id), kv_recurrent->seq_pos_max(seq_id));
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
kv_attn ->state_write(io, seq_id);
|
|
kv_recurrent->state_write(io, seq_id);
|
|
}
|
|
|
|
void llama_kv_cache_hybrid_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
kv_attn ->state_read(io, seq_id);
|
|
kv_recurrent->state_read(io, seq_id);
|
|
}
|
|
|
|
llama_kv_cache_unified * llama_kv_cache_hybrid_recurrent::get_kv_attn() const {
|
|
return kv_attn.get();
|
|
}
|
|
|
|
llama_kv_cache_recurrent * llama_kv_cache_hybrid_recurrent::get_kv_recurrent() const {
|
|
return kv_recurrent.get();
|
|
}
|
|
|
|
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_memory_status status)
|
|
: status(status),
|
|
state_attn(new llama_kv_cache_unified_state(status)),
|
|
state_recurrent(new llama_kv_cache_recurrent_state(status)) {}
|
|
|
|
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(llama_kv_cache_hybrid_recurrent * kv)
|
|
: status(LLAMA_MEMORY_STATUS_SUCCESS),
|
|
kv(kv),
|
|
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
|
|
state_recurrent(new llama_kv_cache_recurrent_state(status, kv->get_kv_recurrent())) {}
|
|
|
|
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
|
|
llama_kv_cache_hybrid_recurrent * kv,
|
|
llama_kv_cache_unified_state * state_unified,
|
|
llama_kv_cache_recurrent_state * state_recurrent)
|
|
: status(LLAMA_MEMORY_STATUS_NO_UPDATE),
|
|
kv(kv),
|
|
state_attn(state_unified),
|
|
state_recurrent(state_recurrent) {}
|
|
|
|
llama_kv_cache_hybrid_recurrent_state::llama_kv_cache_hybrid_recurrent_state(
|
|
llama_kv_cache_hybrid_recurrent * kv,
|
|
llama_sbatch sbatch,
|
|
std::vector<uint32_t> heads_attn,
|
|
std::vector<llama_ubatch> ubatches)
|
|
: status(LLAMA_MEMORY_STATUS_SUCCESS),
|
|
kv(kv),
|
|
sbatch(std::move(sbatch)),
|
|
heads_attn(std::move(heads_attn)),
|
|
ubatches(std::move(ubatches)),
|
|
// NOTE: these child states are only used as wrapper APIs for the
|
|
// const methods, so we use the "init full" signature since the
|
|
// actual state is not used.
|
|
state_attn(new llama_kv_cache_unified_state(kv->get_kv_attn())),
|
|
state_recurrent(new llama_kv_cache_recurrent_state(LLAMA_MEMORY_STATUS_SUCCESS, kv->get_kv_recurrent())) {}
|
|
|
|
|
|
bool llama_kv_cache_hybrid_recurrent_state::next() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
if (++i_next >= ubatches.size()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llama_kv_cache_hybrid_recurrent_state::apply() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
kv->get_kv_attn() ->apply_ubatch(heads_attn[i_next], ubatches[i_next]);
|
|
kv->get_kv_recurrent()->find_slot(ubatches[i_next]);
|
|
|
|
return true;
|
|
}
|
|
|
|
std::vector<int64_t> & llama_kv_cache_hybrid_recurrent_state::out_ids() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
return sbatch.out_ids;
|
|
}
|
|
|
|
llama_memory_status llama_kv_cache_hybrid_recurrent_state::get_status() const {
|
|
return status;
|
|
}
|
|
|
|
const llama_ubatch & llama_kv_cache_hybrid_recurrent_state::get_ubatch() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
return ubatches[i_next];
|
|
}
|
|
|
|
const llama_kv_cache_unified_state * llama_kv_cache_hybrid_recurrent_state::get_state_attn() const {
|
|
return state_attn.get();
|
|
}
|
|
|
|
const llama_kv_cache_recurrent_state * llama_kv_cache_hybrid_recurrent_state::get_state_recurrent() const {
|
|
return state_recurrent.get();
|
|
}
|