Files
llama.cpp/ggml/src/ggml-cpu/repack.cpp
2025-06-20 11:19:15 +03:00

1570 lines
60 KiB
C++

#define GGML_COMMON_IMPL_CPP
#define GGML_COMMON_DECL_CPP
#include "ggml-common.h"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-impl.h"
#include "traits.h"
#include "arch-fallback.h"
#include <cmath>
#include <cstring>
#include <cassert>
#include <cstdlib> // for qsort
#include <cstdio> // for GGML_ASSERT
#include "repack.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Woverlength-strings"
#endif
#define UNUSED GGML_UNUSED
static inline int nearest_int(float fval) {
assert(fabsf(fval) <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
// Functions to create the interleaved data layout formats
// interleave 4 block_q4_0s in blocks of blck_size_interleave
// returns an interleaved block_q4_0x4
// in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks
// first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave
//
// - in : an array of block_q4_0 pointers
// - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of
// blck_size_interleave bytes
// - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes
// from bias offset form to pure sign form (this saves subtract
// operations durin unpacking)
//
extern "C" {
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
// scalar
const int blck_size_interleave = 4;
float srcv[4][QK8_0];
float id[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
amax = MAX(amax, fabsf(srcv[row_iter][j]));
}
const float d = amax / ((1 << 7) - 1);
id[row_iter] = d ? 1.0f / d : 0.0f;
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
}
for (int j = 0; j < QK8_0 * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
float x0 = srcv[src_id][src_offset] * id[src_id];
y[i].qs[j] = roundf(x0);
}
}
}
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
// scalar
const int blck_size_interleave = 8;
float srcv[4][QK8_0];
float id[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
amax = MAX(amax, fabsf(srcv[row_iter][j]));
}
const float d = amax / ((1 << 7) - 1);
id[row_iter] = d ? 1.0f / d : 0.0f;
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
}
for (int j = 0; j < QK8_0 * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
float x0 = srcv[src_id][src_offset] * id[src_id];
y[i].qs[j] = roundf(x0);
}
}
}
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
const int nb = k / QK_K;
block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
// scalar
const int blck_size_interleave = 8;
float srcv[4][QK_K];
float iscale[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
float max = 0;
for (int j = 0; j < QK_K; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
// Update the maximum value of the corresponding super block
if(amax < fabsf(srcv[row_iter][j])) {
amax = fabsf(srcv[row_iter][j]);
max = srcv[row_iter][j];
}
}
iscale[row_iter] = amax ? -127.f/max : 0;
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
}
for (int j = 0; j < QK_K / 4; j++) {
y[i].bsums[j] = 0;
}
// Quants values are interleaved in sequence of eight bytes from corresponding super blocks
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
for (int j = 0; j < QK_K * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
float x0 = srcv[src_id][src_offset] * iscale[src_id];
y[i].qs[j] = nearest_int(x0);
y[i].bsums[index] += y[i].qs[j];
}
}
}
} // extern "C"
template <int64_t INTER_SIZE, ggml_type PARAM_TYPE>
void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row);
template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row);
}
extern "C" {
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 8;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[8];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
}
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[8];
float sum_minf[8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
const block_q8_K * a_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) {
sumf[j] = 0.0;
sum_minf[j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
for (int j = 0; j < ncols_interleaved; j++) {
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
}
}
}
for (int j = 0; j < ncols_interleaved; j++) {
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
}
}
}
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[4];
int sumi;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
}
}
}
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
}
}
}
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
}
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 8;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][8];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][8];
float sum_minf[4][8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumf[m][j] = 0.0;
sum_minf[m][j] = 0.0;
}
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
}
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
for(int m = 0; m < 4; m++) {
const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
for(int j = 0; j < ncols_interleaved; j++) {
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
}
}
}
}
}
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0;
const int nb = n / qk;
const int ncols_interleaved = 4;
const int blocklen = 4;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
{
float sumf[4][4];
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++)
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
}
}
}
}
}
} // extern "C"
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
block_q4_0x4 out;
for (int i = 0; i < 4; i++) {
out.d[i] = in[i].d;
}
const int end = QK4_0 * 2 / blck_size_interleave;
if (blck_size_interleave == 8) {
const uint64_t xor_mask = 0x8888888888888888ULL;
for (int i = 0; i < end; ++i) {
int src_id = i % 4;
int src_offset = (i / 4) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
uint64_t elems;
// Using memcpy to avoid unaligned memory accesses
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
elems ^= xor_mask;
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
}
} else if (blck_size_interleave == 4) {
const uint32_t xor_mask = 0x88888888;
for (int i = 0; i < end; ++i) {
int src_id = i % 4;
int src_offset = (i / 4) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
uint32_t elems;
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t));
elems ^= xor_mask;
memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t));
}
} else {
GGML_ASSERT(false);
}
return out;
}
// interleave 8 block_q4_0s in blocks of blck_size_interleave
// returns an interleaved block_q4_0x8
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) {
block_q4_0x8 out;
for (int i = 0; i < 8; i++) {
out.d[i] = in[i].d;
}
const int end = QK4_0 * 4 / blck_size_interleave;
const uint64_t xor_mask = 0x8888888888888888ULL;
for (int i = 0; i < end; ++i) {
int src_id = i % 8;
int src_offset = (i / 8) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
uint64_t elems;
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
elems ^= xor_mask;
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
}
return out;
}
static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) {
block_q4_Kx8 out;
//Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure
for (int i = 0; i < 8; i++) {
out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
}
for (int i = 0; i < 8; i++) {
out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
}
const int end = QK_K * 4 / blck_size_interleave;
// Interleave Q4_K quants by taking 8 bytes at a time
for (int i = 0; i < end; ++i) {
int src_id = i % 8;
int src_offset = (i / 8) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
uint64_t elems;
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
}
// The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K
// Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value)
// The output Q4_Kx8 structure has 96 bytes
// Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure
// For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures
uint8_t s[8], m[8];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 8; j++) {
s[j] = in[j].scales[i] & 63;
m[j] = in[j].scales[i + 4] & 63;
}
out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2);
out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2);
out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2);
out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2);
out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2);
out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2);
out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2);
out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2);
out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4);
out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4);
out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4);
out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4);
}
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 8; j++) {
s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15);
m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4);
}
out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2);
out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2);
out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2);
out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2);
out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2);
out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2);
out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2);
out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2);
out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4);
out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4);
out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4);
out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4);
}
return out;
}
static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
constexpr int nrows_interleaved = 4;
block_q4_0x4 * dst = (block_q4_0x4 *)t->data;
const block_q4_0 * src = (const block_q4_0 *)data;
block_q4_0 dst_tmp[4];
int nrow = ggml_nrows(t);
int nblocks = t->ne[0] / QK4_0;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q4_0x4(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
GGML_ASSERT(interleave_block == 8);
constexpr int nrows_interleaved = 8;
block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
const block_q4_K * src = (const block_q4_K*) data;
block_q4_K dst_tmp[8];
int nrow = ggml_nrows(t);
int nblocks = t->ne[0] / QK_K;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K));
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++ ) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q4_Kx8(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
GGML_ASSERT(interleave_block == 8);
constexpr int nrows_interleaved = 8;
block_q4_0x8 * dst = (block_q4_0x8*)t->data;
const block_q4_0 * src = (const block_q4_0*) data;
block_q4_0 dst_tmp[8];
int nrow = ggml_nrows(t);
int nblocks = t->ne[0] / QK4_0;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++ ) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q4_0x8(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) {
block_iq4_nlx4 out;
for (int i = 0; i < 4; i++) {
out.d[i] = in[i].d;
}
const int end = QK4_NL * 2 / blck_size_interleave;
// TODO: this branch seems wrong
//if (blck_size_interleave == 8) {
// for (int i = 0; i < end; ++i) {
// int src_id = i % 4;
// int src_offset = (i / 4) * blck_size_interleave;
// int dst_offset = i * blck_size_interleave;
// // Using memcpy to avoid unaligned memory accesses
// memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
// }
//} else
if (blck_size_interleave == 4) {
for (int i = 0; i < end; ++i) {
int src_id = i % 4;
int src_offset = (i / 4) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t));
}
} else {
GGML_ASSERT(false);
}
return out;
}
static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
//GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
GGML_ASSERT(interleave_block == 4);
block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
const block_iq4_nl * src = (const block_iq4_nl *)data;
block_iq4_nl dst_tmp[4];
int nrow = ggml_nrows(t);
int nrows_interleaved = 4;
int nblocks = t->ne[0] / QK4_0;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
namespace ggml::cpu::repack {
// repack
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
int repack(struct ggml_tensor *, const void *, size_t);
// TODO: generalise.
template <> int repack<block_q4_0, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_0_to_q4_0_4_bl(t, 4, data, data_size);
}
template <> int repack<block_q4_0, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_0_to_q4_0_4_bl(t, 8, data, data_size);
}
template <> int repack<block_q4_0, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_0_to_q4_0_8_bl(t, 8, data, data_size);
}
template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
}
template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size);
}
// TODO: needs to be revisited
//template <> int repack<block_iq4_nl, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
// return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size);
//}
// gemv
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemv(int, float *, size_t, const void *, const void *, int, int);
template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
// gemm
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemm(int, float *, size_t, const void *, const void *, int, int);
template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
class tensor_traits_base : public ggml::cpu::tensor_traits {
public:
virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0;
};
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> class tensor_traits : public tensor_traits_base {
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
// not realy a GGML_TYPE_Q8_0 but same size.
switch (op->op) {
case GGML_OP_MUL_MAT:
{
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
return true;
}
case GGML_OP_MUL_MAT_ID:
{
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert
const int64_t ne12 = op->src[1]->ne[2]; // n_tokens
const size_t sizeof_mmid_row_mapping = sizeof(int64_t);
size += sizeof_mmid_row_mapping*ne02*(ne12 + 1);
return true;
}
default:
// GGML_ABORT("fatal error");
break;
}
return false;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
switch (op->op) {
case GGML_OP_MUL_MAT:
forward_mul_mat(params, op);
return true;
case GGML_OP_MUL_MAT_ID:
forward_mul_mat_id(params, op);
return true;
default:
// GGML_ABORT("fatal error");
break;
}
return false;
}
void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) {
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
ggml_tensor * dst = op;
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_n_dims(op->src[0]) == 2);
// GGML_ASSERT(ggml_n_dims(op->src[1]) == 2);
char * wdata = static_cast<char *>(params->wdata);
const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
assert(params->wsize >= nbw1 * ne11);
const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
int64_t i11_processed = 0;
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10);
}
i11_processed = ne11 - ne11 % 4;
for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10);
}
ggml_barrier(params->threadpool);
const void * src1_wdata = params->wdata;
const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10);
int64_t src0_start = (ith * ne01) / nth;
int64_t src0_end = ((ith + 1) * ne01) / nth;
src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
if (src0_start >= src0_end) {
return;
}
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
if (ne11 > 3) {
gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *) ((char *) dst->data) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
}
for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata + (src1_col_stride * iter), 1,
src0_end - src0_start);
}
}
void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) {
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
const ggml_tensor * ids = op->src[2];
ggml_tensor * dst = op;
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne03 == 1);
GGML_ASSERT(ne13 == 1);
GGML_ASSERT(ne3 == 1);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// row groups
const int n_ids = ids->ne[0]; // n_expert_used
const int n_as = ne02; // n_expert
const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
GGML_ASSERT(params->wsize >=
(GGML_PAD(nbw3, sizeof(int64_t)) +
n_as*(ne12 + 1)*sizeof(mmid_row_mapping))
);
auto * wdata = (char *)params->wdata;
auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t));
// total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t)
auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
// src1: float32 => param type
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11),
(void *) (wdata + i12 * nbw2 + i11 * nbw1),
ne10);
}
}
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id) * ne12 + (i1)]
if (ith == 0) {
// initialize matrix_row_counts
memset(matrix_row_counts, 0, n_as * sizeof(int64_t));
// group rows by src0 matrix
for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
for (int32_t id = 0; id < n_ids; ++id) {
const int32_t i02 =
*(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 };
matrix_row_counts[i02] += 1;
}
}
}
ggml_barrier(params->threadpool);
// compute each matrix multiplication in sequence
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
const int64_t cne1 = matrix_row_counts[cur_a];
if (cne1 == 0) {
continue;
}
const auto * src0_cur = (const char *) src0->data + cur_a*nb02;
//const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1; // src1 rows
int64_t src0_cur_start = (ith * ne01) / nth;
int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
if (src0_cur_start >= src0_cur_end) {
return;
}
for (int ir1 = 0; ir1 < nr1; ir1++) {
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
const int id = row_mapping.i1; // selected expert index
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2);
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
src0_cur + src0_cur_start * nb01,
src1_col, 1, src0_cur_end - src0_cur_start);
}
}
#undef MMID_MATRIX_ROW
}
int repack(struct ggml_tensor * t, const void * data, size_t data_size) override {
GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n", __func__, t->name, ggml_type_name(t->type),
(int) NB_COLS, (int) INTER_SIZE);
return ggml::cpu::repack::repack<BLOC_TYPE, INTER_SIZE, NB_COLS>(t, data, data_size);
}
};
// instance for Q4
static const tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
static const tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
static const tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
static const tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for IQ4
static const tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
} // namespace ggml::cpu::repack
static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) {
if (cur->type == GGML_TYPE_Q4_0) {
if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
if (cur->ne[1] % 8 == 0) {
return &ggml::cpu::repack::q4_0_8x8_q8_0;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::q4_0_4x8_q8_0;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::q4_0_4x4_q8_0;
}
}
} else if (cur->type == GGML_TYPE_Q4_K) {
if (ggml_cpu_has_avx2()) {
if (cur->ne[1] % 8 == 0) {
return &ggml::cpu::repack::q4_K_8x8_q8_K;
}
}
} else if (cur->type == GGML_TYPE_IQ4_NL) {
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::iq4_nl_4x4_q8_0;
}
}
}
return nullptr;
}
static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_repack_get_optimal_repack_type(tensor));
GGML_UNUSED(buffer);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra;
auto OK = tensor_traits->repack(tensor, data, size);
GGML_ASSERT(OK == 0);
GGML_UNUSED(buffer);
}
static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_REPACK";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
if (buffer == nullptr) {
return nullptr;
}
buffer->buft = buft;
buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor;
buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor;
buffer->iface.get_tensor = nullptr;
buffer->iface.cpy_tensor = nullptr;
return buffer;
}
static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return TENSOR_ALIGNMENT;
GGML_UNUSED(buft);
}
namespace ggml::cpu::repack {
class extra_buffer_type : ggml::cpu::extra_buffer_type {
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
if ( op->op == GGML_OP_MUL_MAT &&
op->src[0]->buffer &&
(ggml_n_dims(op->src[0]) == 2) &&
op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() &&
ggml_repack_get_optimal_repack_type(op->src[0])
) {
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
if (op->src[1]->type == GGML_TYPE_F32) {
return true;
}
//if (op->src[1]->type == GGML_TYPE_Q8_0) {
// return true;
//}
// may be possible if Q8_0 packed...
} else if (op->op == GGML_OP_MUL_MAT_ID
&& op->src[0]->buffer
&& (ggml_n_dims(op->src[0]) == 3)
&& op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()
&& ggml_repack_get_optimal_repack_type(op->src[0])
) {
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
if (op->src[1]->type == GGML_TYPE_F32) {
return true;
}
//if (op->src[1]->type == GGML_TYPE_Q8_0) {
// return true;
//}
}
return false;
}
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
}
return nullptr;
}
};
} // namespace ggml::cpu::repack
ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment,
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .is_host = */ nullptr,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ new ggml::cpu::repack::extra_buffer_type(),
};
return &ggml_backend_cpu_buffer_type_repack;
}